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Abstract— 5-fold rotation symmetry is 

exhibited in quasicrystals, but a 5-fold crystal 

system does not exist. The aim of this paper is to 

propose the possible structure and properties of 

point groups of a crystal system with 5-fold 

rotation. An assumption is made that 5-fold 

rotational symmetry is possible and derivations 

are done based on this assumption in order to 

show the 1st rank and 2nd rank tensor properties 

of the point groups that belong to this crystal 

systems. The last section is dedicated to 

discussing the possible applications of 5-fold 

rotational symmetry crystals based on the 

properties of quasicrystals. 
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I. INTRODUCTION 

According to the crystal restriction theorem 
crystals can only show 2-fold, 3-fold, 4-fold or 6-
fold rotational symmetry[1],[2]. However, 
quasicrystals (discovered in the 1980s) have been 
found to naturally exhibit 5-fold[3] rotational 
symmetry although aperiodic[4]. This is the 
motivation behind this paper; we explore the 
question: what if 5-fold rotational symmetry was 
possible? This paper proposes that 5-fold rotational 
symmetry would give rise to a new crystal system: 
The pentagonal crystal system. 

 This paper is structured as follows: Using the 
nomenclature of the two closest crystal systems 
(Hexagonal and Tetragonal) the first section walks 
through the derivation of the point groups of such a 
crystal system and the corresponding the 
stereograms. It then transitions to derivations of 
metrices for the first and second ranks tensor 
properties (pyroelectricity, pyromagnetism and 
thermal expansion). The final section explores 
some possible applications for pentagonal crystals. 

II. PENTAGONAL POINT GROUPS 

A. Point Group Derivation 

Assuming the possibility of 5-fold rotation, the 
pentagonal crystal would consist of the following 
point groups: 5, 5/m, 522, 5mm, 5/mmm. These 5 
are chosen based on the pattern exhibited by two 

closest crystal groups – Tetragonal (4, 4̅, 4/m, 422, 

4mm, 4̅2m, 4/mmm) and Hexagonal (6, 6̅, 6/m, 

622, 6mm, 6̅m2, 6/mmm). 

In comparison to hexagonal and tetragonal, the 
pentagonal group does not include inversion (such 

as 5̅) because such an operation would violate the 
symmetry as proven in the stereograms in Fig. 1. 
Furthermore, we propose the following notation for 
pentagonal which slightly differs from that of 
Hexagonal and Tetragonal: 

• 1st notation is along the c axis 

• 2nd notation is along or perpendicular to the 
a axis. The a axis must be aligned with the 
stereogram’s rotation edge. 

• 3rd notation is along or perpendicular to 28 
degrees from the b axis 

In the sections that follow, we focus on 
derivation of properties for just the first 4 point 
groups (5, 5/m, 522, 5mm) 

B. Stereograms 

Following the convention defined above, the 
following stereograms can be constructed for each 
point group: 

    

5 5/m 522 5mm 

Fig. 1. Stereograms for the pentagonal point groups 

C. Transformation matrices 

The transformation matrix for 5-fold rotation 
about the c axis is derived from the general formula 
for angular rotation about c where θ =  72°:  



𝑅(𝜃) = (
cos 𝜃 sin 𝜃 0

−sin 𝜃 cos 𝜃 0
0 0 1

)  =  (
0.309 0.9511 0

−0.9511 0.309 0
0 0 1

)   

Following the syntax and notation for the 
pentagonal point groups, the following 
transformation matrices are derived from 
multiplication of the individual symmetrical 
operations: 

TABLE I.  TRANFORMATION MATRICES 

Point 

group 

Redundant 

element 
Final matrix 

5 None  (
0.309 0.9511 0

−0.9511 0.309 0

0 0 1

) 

5/m None (
0.309 0.9511 0

−0.9511 0.309 0

0 0 −1

) 

522 Last 2 (
0.309 −0.9511 0

−0.9511 −0.309 0

0 0 −1

) 

5mm Last m (
−0.309 0.9511 0

0.9511 0.309 0

0 0 1

) 

 

III. FIRST RANK AND SECOND RANK TENSOR 

PROPERTIES 

A. Pyromagnetism, Pyrolectricity and Thermal 

Expansion Properties by Neumann’s Principle 

The table below summarizes the results of 
applying Neuman’s principle to derive the 
pyroelectric, pyromagnetic and thermal expansion 
matrices.  

TABLE II.  1ST AND 2ND RANK TENSOR PROPERTIES 

Point 

group 

Pyroelectric 

matrix 

Pyromagnetic 

matrix 

Thermal 

expansion 

matrix 

5 (
0
0

𝑝3
) (

0
0

𝑞3
) (

0 0 0
0 0 0
0 0 𝐷33

) 

5/m (
0
0
0

) (
0
0

𝑞3
) (

0 0 0
0 0 0
0 0 𝐷33

) 

522 (
0
0
0

) (
0
0
0

) (
0 0 0
0 0 0
0 0 𝐷33

) 

5mm (
0
0
0

) (
0
0
0

) (
0 0 0
0 0 0
0 0 𝐷33

) 

B. Discussion 

Point group 5 allows for both 

pyroelectricity and pyromagnetism, both of 

which occur in the same crystallographic 

direction. 5/m allows for just pyromagnetism; 

it does not allow pyroelectricity. All the other 

point groups do not allow pyroelectricity or 

pyromagnetism.  

All the point groups exhibit the same form 

for the thermal expansion matrix therefore they 

should also have similar strain matrices when 

subjected to a temperature change Δ𝑇.  

 

IV. BRAVAIS LATTICE AND STRUCTURE FACTOR 

Based on observations of lattice diagrams, 
pentagonal vaguely resembles hexagonal. The 
Bravais lattice of a pentagonal system would likely 
be primitive and it would resemble the hexagonal 
primitive lattice except the cross section of the unit 
cell would not be a parallelogram. Consequently, 
the lattice would have two non-equivalent points. 
These nonequivalent points (calculated below) are 
(0,0,0) and at (0.7236,0.7236,0). 

 

𝑡𝑎𝑛(54) = ℎ/0.5 

ℎ =  0.6881 

𝑠𝑖𝑛(72) = 0.6881/ 𝑦′ 

𝑦′ =  𝑥′ =  0.7236 

a) Pentagonal primitive 
cell cross-section 

b) Solution for 2nd 
nonequivalent point 

Fig. 2. Derivation of the 2nd nonequivalent point for 

pentagonal primitive lattice 

With the two nonequivalent points, the structure 
factor can be calculated as shown below: 

𝐹ℎ𝑘𝑙  =  ∑ 𝑓𝑗  𝑒2𝜋𝑖 (ℎ𝑥𝑗  + 𝑘𝑦𝑗 + 𝑙𝑧𝑗)

𝑁 

𝑗 = 1

 

𝐹ℎ𝑘𝑙 = 𝑓 (𝑒2𝜋𝑖 0 + 𝑒2𝜋𝑖 ∗1.4472 (ℎ+𝑘))
≈ 𝑓 (1 + 𝑒2𝜋𝑖 ∗1.5 (ℎ+𝑘)) 

𝐹ℎ𝑘𝑙  ≈ {
0, 1.5(ℎ + 𝑘) 𝑖𝑠 𝑜𝑑𝑑

2, 1.5(ℎ + 𝑘 ) 𝑖𝑠 𝑒𝑣𝑒𝑛
 

 

V. POTENTIAL APPLICATIONS 

Flexible magnets: 5 and 5/m have 
ferromagnetic properties, furthermore, the 
pentagon lattices can be arranged in such a way that 
the structure resembles that of polysiloxanes[5]. If 
this structure is possible then the crystal could 
potentially be magnetic and compliant. 

Quasicrystals: Quasicrystals exhibit ordered 
but aperiodic 5-fold rotation. They also exhibit 
properties such as high thermal[6] and electrical 
resistance, low coefficient of friction[7] and non-



stick properties that enables them to be applied in 
making non-stick frying pan coating[7], reinforcing 
steel[8] to make hard steel that’s resistant to 
corrosion, and embedding in plastic to make hard 
low friction plastic gear. It is plausible that crystals 
of the pentagonal crystal system could also possess 
these properties and have these applications. 
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