
ES	50	Project	2016	 Page	1	
	

Billy’s Checkers	
	
	
	

School of Engineering and Applied Sciences	
Harvard University	

	
Cambridge MA.	

	
	
	
	
	

An electronic LED and push button board that allows you to play checkers.	
	

By: Victor Yang, Ryan Wood, Billy Koech, Sean Park	
	
	

Class: Engineering Sciences 50	
Instructors: Marko Loncar & Christopher Lombardo	

	
	

	
December 2016	

	
	
	
ABSTRACT	
	

Billy’s Checkers is an electronic checkerboard controlled using an Arduino
microcontroller and powered using a single 9V battery. It allows two users to play the

game of checkers, much like you would on a normal cardboard board. Each of 32 squares
on the board contains an RGB LED and a push button to dictate to the board which piece

to move and where. These two elements are wired through different circuits. Due to
limits on the number of pins on the Arduino, creativity was used to control all 32 LEDs

and push buttons. For the LEDs, two sets of four daisy-chained SN74HC595 shift
registers write a 32-bit binary number to the board, where each bit controls the LED for
one square, and the two sets of shift registers control red and blue colors for each player.

For the push buttons, 8 of them are connected in series, with one side of the buttons
shorted (connected to one Arduino analog input pin) and the other side containing a 2.2k
Ohm resistor between each button (connected to power)2. In this way, when power is on
and a button is pressed, each button opens a circuit with a different amount of resistance,
causing a different voltage to be read by the Arduino. The problem with this idea is that

two buttons cannot be pressed at the same time, but that should never happen in a
checkers game.	

ES	50	Project	2016	 Page	2	
	

INTRODUCTION	
	
The goal of the project was to make checkers more exciting from its typical bland board
and pieces. Additionally, we wanted to make to make the setup process easier and avoid
the confusion of missing pieces. To that end, we decided to create an electronic
checkerboard where RBG LEDs take the place of pieces. Blue and red represent each of
two players, and moving a piece simply involves clicking a push button next to the piece
you want to move and then clicking the square to move it to. The board would disallow
any invalid moves and we recognize when a player won. Setting up the board would only
take a push of a button, and all the LEDs are soldered in place so there is no possibility of
losing them.	
	
	
DESIGN 	
	
The hardware design aspect of this project focused primarily around two problems:
controlling 64 LED inputs with a limited number of Arduino output pins, and taking input
from 32 tactile push switches from a limited number of Arduino input pins. The software
design was a separate issue.

We decided to use 32 RGB LEDs, one for each of the 32 game board squares that are used
during gameplay. This was because the alternatives involves two single-color LEDs, which
looked bulky and would require wiring another set of LEDs to ground. Red was to represent
a piece from one player, and blue was to represent a piece from the other player, adding up
to a sum of 64 total LED outputs to control. As the Arduino only has 13 GPIO pins, we
decided to use shift registers to control the LEDs. This was largely because it was the only
method that any of us four knew well, and other solutions seemed to be much more
complicated anyways. We used two daisy-chains of shift registers, each chain controlling
one color of LED (kindly see figure 3 for a diagram of the LED circuit with the shift
registers). In this way, we could still output two colors from the same Arduino. Thus, each
daisy chain was in control of 32 LEDs, meaning each was 4 shift registers long. Each daisy
chain was controlled by a different clock and different data pins, but shared the latch input.
We discovered that this was necessary during the implementation process written about
below. The shift registers are rated to optimally source no more than 6 milliamps; current
limiting resistors were carefully selected based on what was used in lab 61 and attached to
each LED to ensure this current limit was not exceeded.

On each square that had an LED, there was also a tactile push switch to sense user input
(kindly see figure 2 for a diagram of the push button circuit). Having 32 inputs was a
challenge. Our first idea was to use shift registers in an input configuration. However, we
abandoned this idea for another simpler idea that would allow for less wiring in the circuit.
Each row of buttons (four total rows of eight buttons each) was attached on one side to a
voltage divider, such that the potential on one side of each button was different. The other
side of the buttons were shorted together and connected to an analog input pin on the
Arduino. In our code, we could determine which button was pushed by reading the analog
value on the input pin. To prevent the voltage on the input pins from floating while not in

ES	50	Project	2016	 Page	3	
	

use, they were all attached to ground through a high value resistor. This was deemed
necessary through an instructional video found through online research2.

In addition, we added the capability to run the system off a 9V battery source rather than
USB power from a computer. The benefit of this was portability, as a laptop was no longer
needed to power the apparatus. Although the Arduino has an on-board regulator, allowing
it to accept up to 12V power, that regulator is low powered and inadequately cooled as
known through prior experience. We added a 5v regulator in a TO-220 package to increase
the power capacity and heat dissipation, knowing that controlling up to 32 LEDs may add
up to hundreds of milliamps of current draw.

The software part of the project involved reading the analog inputs, analyzing the situation,
and writing to the shift registers in sequence. Writing to the shift registers involved sending
two 32-bit binary numbers to the SHIFT_OUT function, each bit representing an LED, and
each 32-bit number writing to a different shift register. We decided to display LED output
in this manner because it only involved one line of code and, by adding up the decimal
values of all the pieces that we wanted to light up at one time, we could store the state of
the board in one simple number, making the code much easier to write. We wrote several
functions that allowed the movement of certain pieces to certain positions, each position
having a unique set of possible moves. Two arrays kept track of the status of each square
(on or off); this made the most sense because it became much more easy to access the
current state of any one LED and reference that state with our overall number representing
the unique state of the board.
	
PARTS LIST 	

Part	Name	 Source	 URL	 Unit	Price	 Quantity	 Total	Price	
RGB	LED	 Lab	 https://www.amazon.com/Chan

zon-100pcs-Emitting-Multicolor-
Tri-
color/dp/B01C19ENFK/ref=sr_1
_3?ie=UTF8&qid=1478130026&
sr=8-
3&keywords=5mm+rgb+led	

$8.96/100	
pack	

32	 $8.96	

Tactile	Push	Switch	Lab	 https://www.adafruit.com/prod
uct/367	

$2.50/20	
pack	

32	 $5.00	

Foam	Board	 Lab	 https://www.walmart.com/ip/E
lmer-s-Guide-Line-Paper-
Laminated-Polystyrene-Foam-
Display-Board-20-x-30-
Black/14940238	

$8.79	 20”	by	20”	 $8.79	

Breadboard	 Lab	 https://www.adafruit.com/prod
uct/239	

$5.95	 2	 $11.90	

Ribbon	Cable	 Lab	 https://www.sparkfun.com/pro
ducts/10647	

$4.46/18’	 9’	 $4.46	

Hookup	Wire	 Lab	 https://www.sparkfun.com/pro $2.25	 1	roll	 $2.25	

ES	50	Project	2016	 Page	4	
	

ducts/8022	
Jumper	Wire	 Lab	 https://www.sparkfun.com/pro

ducts/11026	
$1.76	 1	pack	 $1.76	

Arduino	Uno	 Lab	 https://www.amazon.com/Ardu
ino-Uno-R3-Microcontroller-
A000066/dp/B008GRTSV6/ref=
sr_1_1?ie=UTF8&qid=14781297
94&sr=8-1&keywords=arduino	

$16.06	 1	 $16.06	

Shift	Register	 Lab	 http://www.digikey.com/produc
t-detail/en/texas-
instruments/SN74HC595N/296-
1600-5-ND/277246	

$0.58	 8	 $4.64	

Acrylic	Sheet	 Lab	 http://www.homedepot.com/p/
LEXAN-10-in-x-8-in-
Polycarbonate-Sheet-31-GE-XL-
1/202090134	

$4.26	 9”	by	18”	 $4.26	

5V	Voltage	
Regulator	

Lab	 http://www.digikey.com/produc
t-
detail/en/stmicroelectronics/L7
805CV/497-1443-5-ND/585964	

$0.44	 1	 $0.44	

Grand	Total:	$68.48	
	
	
PROJECT IMPLEMENTATION	

Note: The links in parenthesis are to video segments displaying the implementation
process in action.

A. First we started by building the LED circuit with shift registers on a breadboard.
We chose to have two daisy chains of shift registers1, each with four shift
registers, to control 32 RGB LEDs. We planned to have one daisy chain control
the red components of the LEDs and the other daisy chain control the blue
components.

B. Getting the shift registers to work was tough partly because we had faulty
breadboards. Once we got new breadboards we realized that we had another
challenge still: the shift registers were not responding to our code as expected.
With the help of Professor Loncar we solved this issue by implementing two
separate clock pins, one for each daisy chain of shift registers. Previously, we
would write out the number written into the first daisy-chain once we started on
the second because we had the same clock that would still open the first set for
writing when we incorrectly thought it would be left untouched. Here is a video
segment showing the daisy chains working after innovating with two different
clocks: https://youtu.be/GNGKmRxZbts?t=1m15s

ES	50	Project	2016	 Page	5	
	

Figure 1: The two sets of four daisy-chained shift registers

C. The daisy chains together with the LEDs would provide the output for our board,
but we still needed to take input from users. For this part, we put together a circuit
of resistors in series, and we connected buttons at one terminal to each node of the
chain of resistors. The other terminal of the buttons was then connected to an
analog input pin of the Arduino (kindly see design section for details). Here is a
video segment explaining the button circuit:
https://youtu.be/GNGKmRxZbts?t=1m26s

D. With the buttons, LEDs and shift registers in place, we now had all that we need
to take input and give output.

E. For the checker board, we used foam board and made holes on it for both the
buttons and LEDs. We then placed the buttons and LEDs in their right places
(https://youtu.be/GNGKmRxZbts?t=2m5s) and wired the circuit underneath the
foam board in the following order. First, we soldered each ground pin on the
LEDs to a 330 ohm resistor. Then, we wired them together in series and
connected them to the ground pin on the Arduino. We then connected the red and
blue pins on the LED separately to the two different daisy chains of shift registers.
After that, we proceeded to make the push button circuit by first shorting the
terminals that would go to the analog input pin and then connecting the other
terminals in series with a 2.2k ohm resistor between each push button (see figure
4 for a diagram of one square of our physical finished product).

F. We used hot glue to keep pieces on the board from falling off.
G. Once the board, button and LED setup was complete we proceeded to tackle the

coding part of this project. Since we hoped to control each piece on the board with
its respective buttons we used thresholds to distinguish inputs from different then
had these inputs trigger a sequence of variables and functions that would either
turn on or off LEDs. In figure 5 is the code used for the implementation of the
board. Kindly see the comments above each line of code to understand the
purpose of the code. The working board can be seen in action here:
https://youtu.be/GNGKmRxZbts?t=3m30s

	
	
TEAM MANAGEMENT
	
Every time our team went to the lab, we went as a collective unit. We did not divide up the
work into large segments, but rather stuck together as a team for every large task, and then

ES	50	Project	2016	 Page	6	
	

split up those large tasks into smaller chunks doable for one person as necessary. For
example, one person would be stripping wires while another person soldered, and the other
two team members would do the same exact thing on another area of the board. During the
earlier stages of the project, each of the four team members would be working on
researching different aspects of the project, such as how to send input from push buttons
to the Arduino and how to write Arduino code for two sets of daisy chained shift registers.
We did not have a team leader, but some team members’ strengths lead them to take charge
of certain aspects of the project. Ryan knew a lot about different circuits that could be
created using the Arduino microcontroller, so he spearheaded the effort to design and build
the circuit for the push buttons. Billy was especially passionate about computer science
and he lead the effort to program the checkers game itself. With that said, it is important to
reiterate that everyone worked a great deal on all aspects of the project.
	
OUTLOOK AND POSSIBLE IMPROVEMENTS	
	
This project could be improved further aesthetically and in terms of the code for the
checkers game if there were more resources and more time. First, in terms of appearances,
wiring up the green portions of the LEDs in addition to the red and blue would allow for
greater creativity in displaying flashes when a player wins, for showing which piece is a
king, or for informing players when they have made an error in gameplay (illegal move,
playing out of turn, etc.). Second, moving onto the code for the game, adding a feature that
keeps track of which player’s turn it is would allow for smoother gameplay, since the board
itself would do much more of the administrative work in the game. Third, a smaller board
of LEDs could be created that keeps track of how many pieces each player has and how
many games each player has won. These improvements are all quite feasible to achieve,
and the only barrier that stopped them from being implemented in the original project was
time. 	
	
ACKNOWLEDGEMENTS:	
	
We would like to acknowledge our project teaching fellow Gregory Hewett. He was a great
support for our group throughout the process and especially assisted us in thinking about
the appearance of the checkers board. We would also like to give special thanks to
Professor Loncar for helping us out with the idea of using two clocks for the two sets of
daisy chained shift registers.	
	
DISCLAIMER	
	
Use of our project is for educational purposes only. 	
	
REFERENCES:	
	
Note:	This	is	an	original	project	coined	by	ourselves,	and	that	is	why	we	do	not	have	
as	many	references	here.	
	

(1) ES	50	Lab	6	for	instructions	on	how	to	daisy-chain	shift	registers:	

ES	50	Project	2016	 Page	7	
	

https://canvas.harvard.edu/courses/16709/assignments/98793		
	

(2) Inspiration (although ours is quite different) for the push button circuit:
https://www.youtube.com/watch?v=nXl4fb_LbcI

	

(appendix on next page)

ES	50	Project	2016	 Page	8	
	

APPENDIX	
	
Figure 2: Push Button Circuit (Our project contained four such circuits in total)
Note: Each button corresponds to one checkers piece. Pressing it signals to the Arduino
what piece is being called.

ES	50	Project	2016	 Page	9	
	

Figure 3: RGB LED Circuit

ES	50	Project	2016	 Page	10	
	

Figure 4: Diagram of physical wiring for one square above and below finished
checkerboard product

Figure 5: Code for the checker’s game	
//Thresholds	to	distinguish	input	from	buttons
int	threshold1	=	850;
int	threshold2	=	600;
int	threshold3	=	520;
int	threshold4	=	400;
int	threshold5	=	310;
int	threshold6	=	250;
int	threshold7	=	150;
int	threshold8	=	70;

//Setup	for	pins	from	shift	registers
int	latchPin	=	4;
int	clockPin	=	3;
int	clockPin2	=	6;
int	dataPin	=	2;
int	dataPin2	=	5;
//Variables	for	sending	bits	to	shift	registers
unsigned	long	numberToDisplay=0;
unsigned	long	numberToDisplay2=0;

//Variables	to	distinguish	bits	sent	to	red	and	blue	shift	registers
unsigned	long	blueSum;
unsigned	long	redSum;

//Decimal	values	that	correspond	with	the	LED	that	lights	when	the	value	is	shifted	out.
unsigned	long	led1	=	1;
unsigned	long	led2	=	2;
unsigned	long	led3	=	4;
unsigned	long	led4	=	8;
unsigned	long	led5	=	16;
unsigned	long	led6	=	32;

ES	50	Project	2016	 Page	11	
	

unsigned	long	led7	=	64;
unsigned	long	led8	=	128;
unsigned	long	led9	=	256;
unsigned	long	led10	=	512;
unsigned	long	led11	=	1024;
unsigned	long	led12	=	2048;
unsigned	long	led13	=	4096;
unsigned	long	led14	=	8192;
unsigned	long	led15	=	16384;
unsigned	long	led16	=	32768;
unsigned	long	led17	=	65536;
unsigned	long	led18	=	131072;
unsigned	long	led19	=	262144;
unsigned	long	led20	=	524288;
unsigned	long	led21	=	1048576;
unsigned	long	led22	=	2097152;
unsigned	long	led23	=	4194304;
unsigned	long	led24	=	8388608;
unsigned	long	led25	=	16777216;
unsigned	long	led26	=	33554432;
unsigned	long	led27	=	67108864;
unsigned	long	led28	=	134217728;
unsigned	long	led29	=	268435456;
unsigned	long	led30	=	536870912;
unsigned	long	led31	=	1073741824;
unsigned	long	led32	=	2147483648;

//Array	of	LED’s	decimal	values
unsigned	long	led[32]	=	{led1,
led2,
led3,
led4,
led5,
led6,
led7,
led8,
led9,
led10,
led11,
led12,
led13,
led14,
led15,
led16,
led17,
led18,
led19,
led20,
led21,
led22,
led23,
led24,
led25,
led26,
led27,
led28,

ES	50	Project	2016	 Page	12	
	

led29,
led30,
led31,
led32};

bool	red[32];	 	 //boolean	array	for	red
bool	blue[32];	 	 //boolean	array	for	blue
int	clicked=0;	 	 //integer	that	keeps	track	of	clicked	button
int	prev_clicked=0;	 //integer	that	keeps	track	of	previously	clicked	button
bool	button_state[32];	 //boolean	array	that	keeps	track	of	whether	a	button’s	LED	is	on(true)	or	
off(false)
int	button_color[32];		 //integer	array	that	keeps	track	of	a	button’s	LED	color:	0	red,	1	blue	and	2	
none.
int	order=0;	 	 //integer	that	keeps	track	of	the	order	of	buttons	clicked	through	concatnation
int	difference=0;	 	 //integer	that	keeps	track	of	the	difference	of	values	of	clicked	buttions

//Function	that	listens	for	moves	from	RED	LEDs
void	mover(int	from_to){
if	(order==	from_to	&&	button_state[clicked-1]==	false	&&	button_color[prev_clicked-1]	==	0){
							turn_on(button_color[prev_clicked-1],	clicked);
							turn_off(button_color[prev_clicked-1],	prev_clicked);
							order=0;
					}
}
//Function	that	listens	for	moves	from	BLUE	LEDs(reverse	direction)
void	mover_reverse(int	from_to){
if	(order==	from_to	&&	button_state[clicked-1]==	false	&&	button_color[prev_clicked-1]	==	1){
							turn_on(button_color[prev_clicked-1],	clicked);
							turn_off(button_color[prev_clicked-1],	prev_clicked);
							order=0;
					}
}

//Function	that	listens	for	jumping	moves	from	RED	LEDs
void	jumper(int	from_to,	int	jumpee){

	if	(order==	from_to	&&	button_color[prev_clicked-1]!=	button_color[jumpee-1]	&&	button_state[clicked-
1]==false	&&	button_color[prev_clicked-1]	==	0){
							turn_on(button_color[prev_clicked-1],	clicked);
							turn_off(button_color[prev_clicked-1],	prev_clicked);
							turn_off(button_color[jumpee-1],	jumpee);
							order=0;
					}
	
}

//Function	that	listens	or	jumping	moves	from	BLUE	LEDs
void	jumper_reverse(int	from_to,	int	jumpee){

	if	(order==	from_to	&&	button_color[prev_clicked-1]!=	button_color[jumpee-1]	&&	button_state[clicked-
1]==false	&&	button_color[prev_clicked-1]	==	1){
							turn_on(button_color[prev_clicked-1],	clicked);
							turn_off(button_color[prev_clicked-1],	prev_clicked);
							turn_off(button_color[jumpee-1],	jumpee);
							order=0;
					}
	
}

ES	50	Project	2016	 Page	13	
	

//Function	that	turns	on	an	LED	when	called
void	turn_on(int	color,	int	button_number){

unsigned	long	turn_on_sum=0;
//if	button_color	blue
if	(color==	1){

			for	(int	i=0;	i<32;	i++)
			{
			if	(button_number==	i+1){
				turn_on_sum+=led[i];
				button_state[i]=true;
				button_color[i]=1;
			}
}
blueSum+=turn_on_sum;

}
//if	button_color	red
else	if(color==	0){
	Serial.print("working");
	for	(int	i=0;	i<32;	i++)
	{
	if	(button_number==	i+1){
	turn_on_sum+=led[i];
	button_state[i]=true;
	button_color[i]=0;
	}
	}
	redSum+=turn_on_sum;
	

}
}

//Function	that	turns	off	an	LED	when	called.
void	turn_off(int	color,	int	button_number){

unsigned	long	turn_off_sum=0;
//if	button_color	blue
if	(color==	1){

			for	(int	i=0;	i<32;	i++)
			{
			if	(button_number==	i+1){
				turn_off_sum+=led[i];
				button_state[i]=false;
			}
}
blueSum-=turn_off_sum;

}
//if	button_color	red
else	if(color==	0){

ES	50	Project	2016	 Page	14	
	

	Serial.print("working");
	for	(int	i=0;	i<32;	i++)
	{
	if	(button_number==	i+1){
	turn_off_sum+=led[i];
	button_state[i]=false;
	}
	}
	redSum-=turn_off_sum;
	

}
}

//Function	that	concatenates	integers	
int	concat(int	x,	int	y)	{
int	temp	=	y;
while	(y	!=	0)	{
			x	*=	10;
			y	/=	10;
}
return	x	+	temp;
}

void	setup()	{
	Serial.begin(9600);
	pinMode(latchPin,	OUTPUT);
	pinMode(clockPin,	OUTPUT);
	pinMode(clockPin2,	OUTPUT);
	pinMode(dataPin,	OUTPUT);
	pinMode(dataPin2,	OUTPUT);

//Board	initialization

	for(int	i	=	0;	i	<	32;	i++)	{
//turn	on	first	12	RED	LEDs
			if(i	<	12){
					red[i]	=	true;
					redSum	+=	led[i];
					blue[i]	=	false;
					button_state[i]=true;
					button_color[i]=	0;
			}
//turn	on	last	12	BLUE	LEDs
			else	if(i	>	19){
					blue[i]	=	true;
					blueSum	+=	led[i];
					red[i]	=	false;
					button_state[i]=true;
					button_color[i]=	1;
			}
//keep	the	remaining	LEDs	off
			else	{
					red[i]	=	false;
					blue[i]	=	false;
					button_state[i]=	false;

ES	50	Project	2016	 Page	15	
	

					button_color[i]=	2;
					
			}
	}

}

void	loop()	{
Serial.print(clicked);
Serial.print("\n");
Serial.print("order	is:");
Serial.print(order);

	
	
	
	//Store	input	from	analog	pins	in	integer	variables
	int	a	=	analogRead(0);
	int	b	=	analogRead(1);
	int	c	=	analogRead(2);
	int	d	=	analogRead(3);

	//Use	thresholds	to	distinguish	input	from	different	buttons
					if(a	>	threshold1){
							Serial.print("25");
							if	(clicked	!=	25){
						order=	concat(clicked,25);
						difference=abs(clicked-25);
						prev_clicked=clicked;
						clicked=25;
						}		
						
					}
					if(a	<	threshold1	&&	a	>	threshold2){
							Serial.print("32");
							if	(clicked	!=	32){
						order=	concat(clicked,32);
						difference=abs(clicked-32);
						prev_clicked=clicked;
						clicked=32;
						}	
						
					}
					if(a	<	threshold2	&&	a	>	threshold3){
							Serial.print("26");
							if	(clicked	!=	26){
						order=	concat(clicked,26);
						difference=abs(clicked-26);
						prev_clicked=clicked;
						clicked=26;
						}	
						
					}
					if(a	<	threshold3	&&	a	>	threshold4){
							Serial.print("31");
							if	(clicked	!=	31){

ES	50	Project	2016	 Page	16	
	

						order=	concat(clicked,31);
						difference=abs(clicked-31);
						prev_clicked=clicked;
						clicked=31;
						}	
						
					}
					if(a	<	threshold4	&&	a	>	threshold5){
							Serial.print("27");
							if	(clicked	!=	27){
						order=	concat(clicked,27);
						difference=abs(clicked-27);
						prev_clicked=clicked;
						clicked=27;
						}	
						
					}
					if(a	<	threshold5	&&	a	>	threshold6){
							Serial.print("30");
							if	(clicked	!=	30){
						order=	concat(clicked,30);
						difference=abs(clicked-30);
						prev_clicked=clicked;
						clicked=30;
						}	
						
					}
					if(a	<	threshold6	&&	a	>	threshold7){
							Serial.print("28");
							if	(clicked	!=	28){
						order=	concat(clicked,28);
						difference=abs(clicked-28);
						prev_clicked=clicked;
						clicked=28;
						}	
						
					}
					if(a	<	threshold7	&&	a	>	threshold8){
							Serial.print("29");
							if	(clicked	!=	29){
						order=	concat(clicked,29);
						difference=abs(clicked-29);
						prev_clicked=clicked;
						clicked=29;
						}	
					}

			
					if(b	>	threshold1){
							Serial.print("17");
							if	(clicked	!=	17){
						order=	concat(clicked,17);
						difference=abs(clicked-17);
						prev_clicked=clicked;
						clicked=17;
						}	
						
					}

ES	50	Project	2016	 Page	17	
	

					if(b	<	threshold1	&&	b	>	threshold2){
							Serial.print("24");
							if	(clicked	!=	24){
						order=	concat(clicked,24);
						difference=abs(clicked-24);
						prev_clicked=clicked;
						clicked=24;
						}	
						
					}
					if(b	<	threshold2	&&	b	>	threshold3){
							Serial.print("18");
							if	(clicked	!=	18){
						order=	concat(clicked,18);
						difference=abs(clicked-18);
						prev_clicked=clicked;
						clicked=18;
						}	
						
					}
					if(b	<	threshold3	&&	b	>	threshold4){
							Serial.print("23");
							if	(clicked	!=	23){
						order=	concat(clicked,23);
						difference=abs(clicked-23);
						prev_clicked=clicked;
						clicked=23;
						}	
						
					}
					if(b	<	threshold4	&&	b	>	threshold5){
							Serial.print("19");
							if	(clicked	!=	19){
						order=	concat(clicked,19);
						difference=abs(clicked-19);
						prev_clicked=clicked;
						clicked=19;
						}	
						
					}
					if(b	<	threshold5	&&	b	>	threshold6){
							Serial.print("22");
							if	(clicked	!=	22){
						order=	concat(clicked,22);
						difference=abs(clicked-22);
						prev_clicked=clicked;
						clicked=22;
						}	
						
					}
					if(b	<	threshold6	&&	b	>	threshold7){
							Serial.print("20");
							if	(clicked	!=	20){
						order=	concat(clicked,20);
						difference=abs(clicked-20);
						prev_clicked=clicked;
						clicked=20;
						}	

ES	50	Project	2016	 Page	18	
	

						
					}
					if(b	<	threshold7	&&	b	>	threshold8){
							Serial.print("21");
							if	(clicked	!=	21){
						order=	concat(clicked,21);
						difference=abs(clicked-21);
						prev_clicked=clicked;
						clicked=21;
						}	
						
					}

					if(c	>	threshold1){
							Serial.print("9");
							if	(clicked	!=	9){
						order=	concat(clicked,9);
						difference=abs(clicked-9);
						prev_clicked=clicked;
						clicked=9;
						}	
						
					}
					if(c	<	threshold1	&&	c	>	threshold2){
							Serial.print("16");
							if	(clicked	!=	16){
						order=	concat(clicked,16);
						difference=abs(clicked-16);
						prev_clicked=clicked;
						clicked=16;
						}	
						
					}
					if(c	<	threshold2	&&	c	>	threshold3){
							Serial.print("10");
							if	(clicked	!=	10){
						order=	concat(clicked,10);
						difference=abs(clicked-10);
						prev_clicked=clicked;
						clicked=10;
						}	
						
					}
					if(c	<	threshold3	&&	c	>	threshold4){
							Serial.print("15");
							if	(clicked	!=	15){
						order=	concat(clicked,15);
						difference=abs(clicked-15);
						prev_clicked=clicked;
						clicked=15;
						}	
						
					}
					if(c	<	threshold4	&&	c	>	threshold5){
							Serial.print("11");
							if	(clicked	!=	11){
						order=	concat(clicked,11);
						difference=abs(clicked-11);

ES	50	Project	2016	 Page	19	
	

						prev_clicked=clicked;
						clicked=11;
						}	
						
					}
					if(c	<	threshold5	&&	c	>	threshold6){
							Serial.print("14");
							if	(clicked	!=	14){
						order=	concat(clicked,14);
						difference=abs(clicked-14);
						prev_clicked=clicked;
						clicked=14;
						}	
						
					}
					if(c	<	threshold6	&&	c	>	threshold7){
							Serial.print("12");
							if	(clicked	!=	12){
						order=	concat(clicked,12);
						difference=abs(clicked-12);
						prev_clicked=clicked;
						clicked=12;
						}	
						
					}
					if(c	<	threshold7	&&	c	>	threshold8){
							Serial.print("13");
							if	(clicked	!=	13){
						order=	concat(clicked,13);
						difference=abs(clicked-13);
						prev_clicked=clicked;
						clicked=13;
						}	
						
					}

					if(d	>	threshold1){
						Serial.print("1");
						
						if	(clicked	!=	1){
						order=	concat(clicked,1);
						difference=abs(clicked-1);
						prev_clicked=clicked;
						clicked=1;
						}			
							}
					
					if(d	<	threshold1	&&	d	>	threshold2){
							Serial.print("8");
						if	(clicked	!=	8){
						order=	concat(clicked,8);
						difference=abs(clicked-8);
						prev_clicked=clicked;
						clicked=8;
						}	
						
					}
					if(d	<	threshold2	&&	d	>	threshold3){

ES	50	Project	2016	 Page	20	
	

							Serial.print("2");
							if	(clicked	!=	2){
						order=	concat(clicked,2);
						difference=abs(clicked-2);
						prev_clicked=clicked;
						clicked=2;
						}	
						
					}
					if(d	<	threshold3	&&	d	>	threshold4){
							Serial.print("7");
							if	(clicked	!=	7){
						order=	concat(clicked,7);
						difference=abs(clicked-7);
						prev_clicked=clicked;
						clicked=7;
						}	
						
					}
					if(d	<	threshold4	&&	d	>	threshold5){
							Serial.print("3");
							if	(clicked	!=	3){
						order=	concat(clicked,3);
						difference=abs(clicked-3);
						prev_clicked=clicked;
						clicked=3;
						}	
						
					}
					if(d	<	threshold5	&&	d	>	threshold6){
							Serial.print("6");
							if	(clicked	!=	6){
						order=	concat(clicked,6);
						difference=abs(clicked-6);
						prev_clicked=clicked;
						clicked=6;
						
						}	
					}
					if(d	<	threshold6	&&	d	>	threshold7){
							Serial.print("4");
							if	(clicked	!=	4){
						order=	concat(clicked,4);
						difference=abs(clicked-4);
						prev_clicked=clicked;
						clicked=4;
						}	
						
					}
					if(d	<	threshold7	&&	d	>	threshold8){
							Serial.print("5");
							if	(clicked	!=	5){
						order=	concat(clicked,5);
						difference=abs(clicked-5);
						prev_clicked=clicked;
						clicked=5;
						}	
						

ES	50	Project	2016	 Page	21	
	

					}

			numberToDisplay	=	redSum	;//	Shift	out	RED	sum
			numberToDisplay2	=	blueSum;//Shift	ot	BLUE	sum

			digitalWrite(latchPin,	LOW);

			shiftOut(dataPin2,	clockPin2,	MSBFIRST,	(numberToDisplay2>>24));		//	most	significant	bit	(MSB)	goes	
out	first;
			shiftOut(dataPin2,	clockPin2,	MSBFIRST,	(numberToDisplay2>>16));
			shiftOut(dataPin2,	clockPin2,	MSBFIRST,	(numberToDisplay2>>8));
			shiftOut(dataPin2,	clockPin2,	MSBFIRST,	numberToDisplay2);		//	most	significant	bit	(MSB)	goes	out	
first;

			shiftOut(dataPin,	clockPin,	MSBFIRST,	(numberToDisplay>>24));		//	most	significant	bit	(MSB)	goes	out	
first;
			shiftOut(dataPin,	clockPin,	MSBFIRST,	(numberToDisplay>>16));
			shiftOut(dataPin,	clockPin,	MSBFIRST,	(numberToDisplay>>8));
			shiftOut(dataPin,	clockPin,	MSBFIRST,	numberToDisplay);
			//take	the	latch	pin	high	so	the	LEDs	will	light	up:
			digitalWrite(latchPin,	HIGH);

//Listedn	for	moves	and	call	the	function	whose	condition(s)	is	satisfied
			mover(18);
			jumper(110,8);
			mover(28);
			jumper(29,8);
			mover(27);
			jumper(211,7);
			mover(37);
			jumper(310,7);
			mover(36);
			jumper(312,6);
			mover(46);
			jumper(411,6);
			mover(45);
			mover(512);
			jumper(514,12);
			mover(612);
			jumper(613,12);
			mover(611);
			jumper(615,11);
			mover(711);
			jumper(714,11);
			mover(710);
			jumper(716,10);
			mover(810);
			jumper(815,	10);
			mover(89);
			mover(916);
			jumper(918,16);
			mover(1016);
			jumper(1017,16);
			mover(1015);
			jumper(1019,15);
			mover(1115);
			jumper(1118,15);
			mover(1114);

ES	50	Project	2016	 Page	22	
	

			jumper(1120,14);
			mover(1214);
			jumper(1219,14);
			mover(1213);
			mover(1320);
			jumper(1322,20);
			mover(1420);
			jumper(1421,20);
			mover(1419);
			jumper(1423,19);
			mover(1519);
			jumper(1522,19);
			mover(1518);
			jumper(1524,18);
			mover(1618);
			jumper(1623,18);
			mover(1617);
			mover(1724);
			jumper(1726,24);
			mover(1824);
			jumper(1825,24);
			mover(1823);
			jumper(1827,23);
			mover(1923);
			jumper(1926,23);
			mover(1922);
			jumper(1928,22);
			mover(2022);
			jumper(2027,22);
			mover(2021);
			mover(2128);
			jumper(2130,28);
			mover(2228);
			jumper(2229,28);
			mover(2227);
			jumper(2231,27);
			mover(2327);
			jumper(2330,27);
			mover(2326);
			jumper(2332,26);
			mover(2426);
			jumper(2431,26);
			mover(2425);
			mover(2532);
			mover(2632);
			mover(2631);
			mover(2731);
			mover(2730);
			mover(2830);
			mover(2829);
			mover_reverse(3225);
			mover_reverse(3226);
			jumper_reverse(3223,26);
			mover_reverse(3126);
			jumper_reverse(3124,26);
			mover_reverse(3127);
			jumper_reverse(3122,27);
			mover_reverse(3027);

ES	50	Project	2016	 Page	23	
	

			jumper_reverse(3023,27);
			mover_reverse(3028);
			jumper_reverse(3021,28);
			mover_reverse(2928);
			jumper_reverse(2922,28);
			mover_reverse(2922);
			jumper_reverse(2819,22);
			mover_reverse(2821);
			mover_reverse(2722);
			jumper_reverse(2720,22);
			mover_reverse(2723);
			jumper_reverse(2718,23);
			mover_reverse(2623);
			jumper_reverse(2619,23);
			mover_reverse(2624);
			jumper_reverse(2617,24);
			mover_reverse(2524);
			jumper_reverse(2518,24);
			mover_reverse(2417);
			mover_reverse(2418);
			jumper_reverse(2415,18);
			mover_reverse(2318);
			jumper_reverse(2316,18);
			mover_reverse(2319);
			jumper_reverse(2314,19);
			mover_reverse(2219);
			jumper_reverse(2215,19);
			mover_reverse(2220);
			jumper_reverse(2213,20);
			mover_reverse(2120);
			jumper_reverse(2114,20);
			mover_reverse(2013);
			mover_reverse(2014);
			jumper_reverse(2011,14);
			mover_reverse(1914);
			jumper_reverse(1912,14);
			mover_reverse(1915);
			jumper_reverse(1910,15);
			mover_reverse(1815);
			jumper_reverse(1811,15);
			mover_reverse(1816);
			jumper_reverse(189,16);
			mover_reverse(1716);
			jumper_reverse(1710,16);
			mover_reverse(169);
			mover_reverse(1610);
			jumper_reverse(167,10);
			mover_reverse(1510);
			jumper_reverse(158,10);
			mover_reverse(1511);
			jumper_reverse(156,11);
			mover_reverse(1411);
			jumper_reverse(147,11);
			mover_reverse(1412);
			jumper_reverse(145,12);
			mover_reverse(1312);
			jumper_reverse(136,12);
			mover_reverse(125);

ES	50	Project	2016	 Page	24	
	

			mover_reverse(126);
			jumper_reverse(123,6);
			mover_reverse(116);
			jumper_reverse(114,6);
			mover_reverse(117);
			jumper_reverse(112,7);
			mover_reverse(107);
			jumper_reverse(103,7);
			mover_reverse(108);
			jumper_reverse(101,8);
			mover_reverse(98);
			jumper_reverse(92,8);
			mover_reverse(81);
			mover_reverse(82);
			mover_reverse(72);
			mover_reverse(73);
			mover_reverse(63);
			mover_reverse(64);
			mover_reverse(54);
			
			
			
			
	

			//	pause	before	next	value:
			delay(20);
	
	Serial.print("\n");
}

	

