

Harvard John A. Paulson School of Engineering and Applied Sciences

Billy Koech EE SB '20

Soft EPMs: Design and Fabrication of Soft Composite Materials for Soft Elecro-magnetic Actuators Pushing the limit of compliance

Presentation Structure

Background

Problem Statement

Technical Specifications

Design

Build

Measure

Define

[4]

[1]

Background Common Actuation methods [3]

Pneumatic

Magnetic/electromagnetic methods.

3. Define

[1]

Background

Pneumatic

Magnetic/electromagnetic methods.

4. Define

Background Challenges

Pneumatic

- Requires extensive pressure infrastructure for higher precision control [1]

Magnetic/electromagnetic methods.

- Rigid actuators
- High power consumption

5. Define

→ Drives up → fabrication and energy cost

Problem Statement

Pneumatic and electromagnetic methods are the most common methods of actuation in the field of soft robotics, however, pneumatic methods require extensive pressure networks in order to achieve high precision control on smaller scales, while most electromagnetic actuators exist in rigid form with high power consumption rates

Problem Statement

Pneumatic and electromagnetic methods are the most common methods of actuation in the field of soft robotics, however, pneumatic methods require extensive pressure networks in order to achieve high precision control on smaller scales, while most electromagnetic actuators exist in rigid form with high power consumption rates Therefore there is a need for a soft actuator with high precision control at low energy costs.

7. Define

Stakeholder Map

8. Define

Soft Robotics design teams

Stakeholder Map

9. Define

Harvard John A. Paulson School of Engineering and Applied Sciences

10. Define

Design

Electropermanent Magnets

[2]

[1]

Electropermanent Magnets

(NdFeB)

magnet (AlNiCo)

[1]

Project Design Process

Technical Specifications

Specification	Target value
Device Scale	1 cm long
Holding Force	20 mN
Soft Iron End relative permeability	10
Compliance	0.001 to 0.05 GPa
Hard Permanent Manget coercivity	1000 kA/m
Semi-hard Permanent coercivity	50 kA/m
Coil conductivity	$3.4 \times 10^6 Sm^{-1}$.
Coil magnetic field strength	100 kA/m
Coil transient current limit	20 A

14. Design

Coercivity: Resistance of a material to be demagnetized

Compliance: Flexibility

Design Alternatives

Flexible Iron Ends

- Main point of Contact
- Inflexible core

Flexible Iron Ends and Coil

Still inflexible core

Flexilbe Iron Ends, Core and Coil

- Highest possible compliance
- Material and manufacuring constraints

15. Design

Soft Iron Ends Design Permeability-Flexibility Trade-Off

Geometry Design Choices

Flexibility Design Choices

- The volume ratio of iron in the mixture is proportional to the permeability and inversely proportional to the flexibility
- Ecoflex 30

16. Design

Objective:

Optimize for permeability and the tradeoff is flexibility

Soft Coil Design Current-Turns trade off

Geometry Design Choices

Flexibility Design Choices

Silicon tube injected with a conductive liquid metal alloy

Magnetic field strenght

RLC model with values from prototype

17. Design

Soft Magnet Design Force Flexibility trade off

Geometry Design Choices

Flexibility Design Choices

• The volume ratio of the magnetic particles in the mixture is proportional to the magnetic force and inversely proportional to the flexibility

18. Design

Build

Soft Iron Ends Build

Ferroelastomer (~70 samples)

Particles in a shell

19. Build

Objective:

Optimize for permeability and the tradeoff is flexibility

Soft Coil Build

3D printed mold

Prototype III

Prototype I

Prototype IV

20. Build

Soft Magnet Build

Hallbach array

Prototype

21. Build

Strontium ferrite is mixed with Ecoflex 30 in the fabrication process

Measure

Measure: Soft Iron ends

Permeability/Inductance

- RLC Meter
- 200 Turn copper coil

Compliance

- INSTRON
- Compression test to determine Young's Modulus

22. Measure

$$L = \frac{\mu N^2 A}{l}$$

$$E = \frac{F/A}{\Delta L / L}$$

Ferroelastomer Inductance

23. Measure

Vacuumed vs Nonvacuumed ferroelastomer

24. Measure

Comparison between ferroelastomer and particles in a shell

TABLE I. COMPARISON OF INDUCTANCE OF NON-VACUUMED FERROELASTOMER AND NON-VACUUMED PARTICLE IN A SHELL SAMPLE

Sample type	Particles sizes (microns)	Mean Inductanc e	Standard Deviation of Inductance
Ferroelastomer	100	793.98	17.849
Particles in a shell	100	791.02	18.39

25. Measure

VE RI ITAS

Measure: Soft Coil

Resistance/Resistivity

• Ohmmeter

Inductance

• RLC meter

27. Measure

Sof Coil Resistivity

SOFT WIRE CHARACTERIZATION TABLE I.

Tube diameter (mm)	EGaIn Length (m)	Electrode diameter	Electrode length (m)	Total Resistance (Ω)	Computed EGaIn resistivity(Ωm)
0.3	1.20	30 AWG (0.254 mm)	0.11	3.566	2.0791E-7
0.3	1.705	28 AWG (0.32004 mm)	0.14	5.74	2.368E-7
0.5	4	22 AWG (0.64516 mm)	0.073	6.115	2.999E-7

28. Measure

Sof Coil Inductance

TABLE I.

PROTOTYPE IV COIL CHARACTERISTICS

Tube diamet er(mm)	EGaIn Length (m)	Electrod e diameter	Electrod e length (m)	Total R (Ω)	EGaIn resistivity (Ωm)	N	L uH
0.3	0.409	28 AWG (0.32004 mm)	0.17	1.413	2.38E-7	10	1.67

29. Measure

Soft Coil Magnetic Field Strength Overdamped RLC model with R=1.413 Ohms, L = 1.67uH, C = 400uF and I = 8mm

30. Measure

$$H = \frac{N I_{circuit}}{\ell_{coil}}$$

Measure: Soft Perm. Magnet

Remanence

Gauss meter

Coercivity

• 2.7T Pulse Magnetizer and Gauss meter to create BH graph

31. Measure

Soft Perm. Magnet Remnance

TABLE I.

STRONTIUM FERRITE MAGNETIC CHARACTERISTICS

Sample #	Mass ratio of SrFe	Smooth side [T]	Rough side [T]	Edge B [T]
1	0.8	0.015	0.006	0.02 6
2	0.7	0.015	0.006	0.01 4

TABLE I.MAGNETIC PARTICLES GRADES[13]

Material	Grade	Coercivity (kA/m)	Remanence Br (T)
NdFeB	N40	1000	1.28
AlNico	LNG40	50	1.26

32. Measure

Conclusion

Achieved Tech Specs

Specification	Target value	Achieved value
Device Scale	1 cm long	2.7 cm
Holding Force	20 mN	-
Soft Iron End relative permeability	10	5.2
Compliance	0.001 to 0.05 GPa	0.001 to 0.002 GP
Hard Permanent Manget coercivity	1000 kA/m	- - %
Semi-hard Permanent coercivity	50 kA/m	-
Coil conductivity	$3.4 \times 10^6 Sm^{-1}$.	$4.03 \times 10^{6} Sm$
Coil magnetic field strength	100 kA/m	25 kA/m
Coil transient current limit	20 A	

33. Conclusion

Permeability: ability of a material to support magnetic field development

Coercivity: Resistance of a material to be demagnetized

Compliance: Flexibility

Future Work and Potential Impact

- Force Characterization
- Size optimization: E ~ V, F ~ A
- Soft Permanent Magnet Fabrication
- Soft Coil Optimization H = (Ni) / I

 Composite material characterization is of use to those designing soft magnetic devices eg soft motors, soft relays, soft moving iron actuator, soft electromagnetic valves

34. Conclusion

Acknowledgement

- Post Doc. Advisor: Bahar Haghighat
- Thesis Reader: Radhika Nagpal
- Section Leaders: Anas Chalah, Daneil Prendergast
- Active Learning Labs Staff
- ES100 Staff
- ES 100 peer support group

35. Conclusion

Thank

You!

Harvard John A. Paulson School of Engineering and Applied Sciences

Billy Koech EE SB '20