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Background

Pneumatic

Magnetic/electromagnetic methods.
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Background

Challenges

Pneumatic

- Requires extensive pressure infrastructure
for higher precision control [1]

Drives up
fabrication and

_ . energy cost
Magnetic/electromagnetic methods.

- Rigid actuators
- High power consumption
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Problem Statement

Pneumatic and electromagnetic
methods are the most common
methods of actuation in the field of soft
robotics, however, pneumatic methods
require extensive pressure networks in
order to achieve high precision control
on smaller scales, while most
electromagnetic actuators exist in rigid
form with high power consumption rates
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Problem Statement

Pneumatic and electromagnetic
methods are the most common
methods of actuation in the field of soft
robotics, however, pneumatic methods
require extensive pressure networks in
order to achieve high precision control
on smaller scales, while most
electromagnetic actuators exist in rigid
form with high power consumption rates
Therefore there is a need for a soft
actuator with high precision control at

low energy costs.
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Stakeholder Map
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Broader System Map
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Electropermanent Magnets
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Electropermanent Magnets
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Technical Specifications

Specification

Device Scale

Holding Force

Sott Iron End relative
permeability

Compliance

Hard Permanent
Manget coercivity

Semi-hard Permanent
coercivity

Coil conductivity

Coil magnetic field

strength
Coil transient current
limat

Target value

1 cm long

20 mN

[S—

0.001 to 0.05 GPa

1000 kA/m

50 kA/m

3.4 x 10°Sm™1.

100 kA/m

20 A

14. Design

Permeability:
ability of a

material to support
magnetic field
development

Coercivity:
Resistance of a
material to be
demagnetized

Compliance: Flexibility
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Design Alternatives

Flexible Iron Ends
» Main point of Contact
* Inflexible core

Flexible Iron Ends and Coil
« Still inflexible core

Flexilbe Iron Ends, Core and Coil

 Highest possible compliance
« Material and manufacuring constraints
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Soft [ron Ends Design Objective:

Permeability-Flexibility Trade-0Off Optimize for
permeability and the
Geometry Design Choices tradeoff is flexibility
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* The volume ratio of iron in the mixture is proportional

to the permeability and inversely proportional
to the flexibility
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« Ecoflex 30

Harvard John A. Paulson
School of Engineering

1 6 DeSign and Applied Sciences




Soft Coil Design

Current-Turns trade off

Geometry Design Choices

Flexibility Design Choices

- Silicon tube injected with a conductive liguid metal alloy

Magnetic field strenght

» RLC model with
values from prototype
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Soft Magnet Design

Force Flexibilty trade off

Geometry Design Choices

Flexibility Design Choices

 The volume ratio of the magnetic particles in the mixture
is proportional to the magnetic force and inversely
proportional to the flexibility

03100 128 Harvard John A. Paulson

ﬁ School of Engineering
and Applied Sciences

18. Design




Build




Soft Iron Ends Build

Ferroelastomer (~70 samples) Objective:

Optimize for
permeability and the
tradeoff is flexibility
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Soft Coil Build

3D printed mold Prototype |
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Soft Magnet Build

Hallbach array

Strontium ferrite is
mixed with Ecoflex
30 in the fabrication
process

21. Build
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Measure: Soft Iron ends

Permeability/Inductance

am ° RLC Meter

] i * 200 Turn copper coil

- INSTRON

~ F/A

. E=——mo

» Compression test to AL /L

determine Young's
Modulus
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Ferroelastomer Inductance
Graph of Relative Permeability for Ecoflex 30

Each line represents particles of different sizes

[iron powder ]
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VVacuumed vs Nonvacuumed ferroelastomer

Graph of Inductance at 1KHz in uH against volume_ratio for Ecoflex 30

Plot for vaccumed and non-vacuumed for 300 micron particles

Vacuum state
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Comparison between ferroelastomer and

Young's modulus

2000000 -

1800000 -

1600000 -

Young's Modulus In Pa

1400000 -

1200000 -

TABLE L

particles in a shell

mesh20shell, #1 sample10 sample11

Sample

COMPARISON OF INDUCTANCE OF NON-VACUUMED FERROELASTOMER AND NON-VACUUMED PARTICLE IN A SHELL SAMPLE

sample12

Test name
| mesh20shell,#1

] sample10

= sample11

sample12

Particles

Mean

shell

. Standard Deviation
Sample type sizes Inductanc
(microns) o of Inductance
Ferroelastomer 100 793.98 17.849
Particles in a 100 791.02 18 39
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Measure: Soft Coil

Resistance/Resistivity

 Ohmmeter

« RLC meter
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Sof Coil Resistivity

TABLE I. SOFT WIRE CHARACTERIZATION

g{ectmde o —— T otal Computed
iameter length Res:stan ce EGaln
resistivity(

EGaln
Length

(m) (m) 2 m)

30 AWG 3.566 2.0791E-7
0.3 1.20 (0.254
mm)

28 AWG 2.368E-7
1
mm)
22 AWG 6.115 2.999E-7
N N i
mi
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Sof Coil Inductance

TABLE 1. PROTOTYPE IV COIL CHARACTERISTICS

Tube EGaln Electrod | Electrod Total EGaln N L
diamet | Length e elength | R (1) | resistivity u
er(mm) (m) diameter (m) (2 m)

28 AWG 1.413 2.38E-7 10 | 1.67
0.3 0.409 (0.32004 0.17
mm)
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Soft Coil Magnetic Field
Strength

Overdamped RLC model with R=17.413 Ohms, L =

L4
1.67uH, C = 400uF and | = 8mm 1.67uH
$
- ICurrentltruugh tlhe EP mlagnet fulr R= 1.4'|I3 L= 1.6|?e-06 C.= O.ODMI %?5413 Ohms —_ E‘D?OUF
Ipeak ~ 20A -
20\ |
H~25kA/m
N1 circult
= —
cotl
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Measure: Soft Perm. Magnet

Remanence

« Gauss meter

» 2.7T Pulse Magnetizer
and Gauss meter to create
BH graph
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Soft Perm. Magnet Remnance

TABLE I. STRONTIUM FERRITE MAGNETIC CHARACTERISTICS

Sample Mass Smooth Rough Edge
# ratio of | side [T] side [T] B [T]
SrFe

6
4

TABLE I. MAGNETIC PARTICLES GRADES[13]

Coercivity Remanence
B B vl
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Achieved Tech Specs

Specification Target value Achieved value
Device Scale 1 cm long 2.7 cm
Holding Force 20 mN -
Soft Iron End
relative permeability 10 .2
Compliance 0.001 to 0.05 GPa 0.001 to 0.002 GPa
Hard Permanent
Manget coercivity 1060 kAm ]
Semi-hard
Permanent 50 kA/m -
coercivity

Coil conductivity

3.4 X 10°Sm™1.

4.03 X 10° Sm™1

Coil magnetic field
strength

100 kA/m 25 kA/m

Coil transient
current limit

20 A -

33. Conclusion

Permeability:
ability of a

material to support
magnetic field
development

Coercivity:
Resistance of a
material to be
demagnetized

Compliance: Flexibility
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~uture Work and
Potential Impact

» Force Characterization

» Size optimization:E~V,F ~ A

» Soft Permanent Magnet Fabrication
» Soft Coil OptimizationH=(Ni) /|

« Composite material characterization is of

use to those designing soft magnetic
devices eg soft motors, soft relays, soft moving iron
actuator, soft electromagnetic valves
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