

Harvard John A. Paulson School of Engineering and Applied Sciences

Soft EPMs: Design and Fabrication of Soft Composite Materials for Soft Elecro-magnetic Billy Koech
EE SB '20 Pushing the limit of compliance

Billy Koech

Presentation Structure

Background

Problem Statement

Technical Specifications

Design

Build

Measure

Define

[4]

[1]

Background **Common Actuation methods [3]**

Pneumatic

Magnetic/electromagnetic methods.

Harvard John A. Paulson **School of Engineering** and Applied Sciences

3. Define

Background

Pneumatic

Magnetic/electromagnetic methods.

4. Define

- Requires extensive pressure infrastructure for higher precision control [1]

Drives up fabrication and energy cost

Harvard John A. Paulson **School of Engineering** and Applied Sciences

- Rigid actuators
- High power consumption

Pneumatic

Background Challenges

Magnetic/electromagnetic methods.

5. Define

Problem Statement

Pneumatic and electromagnetic methods are the most common methods of actuation in the
field of soft robotics, however, pneumatic methods require extensive pressure networks in order to achieve high precision control on smaller scales, while
most electromagnetic actuators exist in rigid form with high power consumption rates

Problem Statement

Therefore there is a need for a soft actuator with high precision control at low energy costs. Pneumatic and electromagnetic methods are the most common methods of actuation in the
field of soft robotics, however, pneumatic methods require extensive pressure networks in order to achieve high precision control on smaller scales, while
most electromagnetic actuators exist in rigid form with high power consumption rates

7. Define

Soft Robotics design

> **100 00 179** a de la concerción de la característica de la característica de la característica de la característica de la c
De la característica de la E A

Harvard John A. Paulson **School of Engineering** and Applied Sciences

Stakeholder Map

8. Define

Stakeholder Map

9. Define

Harvard John A. Paulson **School of Engineering** and Applied Sciences

IVEL 1801 1745 Ky

10. Define

NET 1901 1753

Design

Electropermanent Magnets

[2]

[1]

Harvard John A. Paulson **School of Engineering** and Applied Sciences

11. Design

Electropermanent Magnets

magnet (AlNiCo)

Harvard John A. Paulson **School of Engineering** and Applied Sciences

(NdFeB)

Project Design Process

Technical Specifications

Resistance of a material to be demagnetized Coercivity:

Compliance: Flexibility

Harvard John A. Paulson **School of Engineering** and Applied Sciences

14. Design

Design Alternatives

Flexible Iron Ends

- Main point of Contact
- Inflexible core

Flexible Iron Ends and Coil

• Still inflexible core

Flexilbe Iron Ends, Core and Coil

- Highest possible compliance
	- Material and manufacuring constraints

15. Design

Geometry Design Choices

Soft Iron Ends Design Permeability-Flexibility Trade-Off

Objective:

Optimize for permeability and the tradeoff is flexibility

Harvard John A. Paulson School of Engineering and Applied Sciences

Flexibility Design Choices

- The volume ratio of iron in the mixture is proportional to the permeability and inversely proportional to the flexibility
- Ecoflex 30

16. Design

Geometry Design Choices

Soft Coil Design Current-Turns trade off

Flexibility Design Choices

• Silicon tube injected with a conductive liquid metal alloy

Magnetic field strenght

 • RLC model with values from prototype

17. Design

Geometry Design Choices

Flexibility Design Choices

 • The volume ratio of the magnetic particles in the mixture is proportional to the magnetic force and inversely proportional to the flexibility

Soft Magnet Design Force Flexibilty trade off

18. Design

Build

Soft Iron Ends Build

Ferroelastomer (~70 samples)

Objective:

Optimize for permeability and the tradeoff is flexibility

Harvard John A. Paulson School of Engineering and Applied Sciences

Particles in a shell

19. Build

Prototype I

Prototype III Prototype IV

Soft Coil Build

3D printed mold

20. Build

Soft Magnet Build

Strontium ferrite is mixed with Ecoflex 30 in the fabrication process

Harvard John A. Paulson School of Engineering and Applied Sciences

Prototype

Hallbach array

21. Build

Measure

Measure: Soft Iron ends

Permeability/Inductance

- RLC Meter
- 200 Turn copper coil

Compliance

- INSTRON
- Compression test to determine Young's Modulus

22. Measure

$$
L = \frac{\mu N^2 A}{l}
$$

$$
E = \frac{F/A}{\Delta L/L}
$$

Ferroelastomer Inductance

Graph of Relative Permeability for Ecoflex 30 Each line represents particles of different sizes iron powder $6 -$ Relative Permeability $5 3$ air core 0.0 0.4 0.6 0.2 Percentage of Iron in sample by volume_ratio

23. Measure

Vacuumed vs Nonvacuumed ferroelastomer

Graph of Inductance at 1KHz in uH against volume ratio for Ecoflex 30 Plot for vaccumed and non-vacuumed for 300 micron particles iron powder $1.5 -$ Inductance at 1 KHz in uH
 $\frac{1}{2}$
 $\frac{1}{2}$ 1.2 air core $0.6 0.2$ 0.4 0.0 Percentage of Iron in sample by volume_ratio

24. Measure

Comparison between ferroelastomer and particles in a shell

TABLE I. COMPARISON OF INDUCTANCE OF NON-VACUUMED FERROELASTOMER AND NON-VACUUMED PARTICLE IN A SHELL SAMPLE

25. Measure

1001 1001 1005

Measure: Soft Coil

Inductance

Resistance/Resistivity

• Ohmmeter

• RLC meter

27. Measure

Sof Coil Resistivity

TABLE I. **SOFT WIRE CHARACTERIZATION**

28. Measure

Sof Coil Inductance

TABLE I.

PROTOTYPE IV COIL CHARACTERISTICS

29. Measure

Soft Coil Magnetic Field Strength Overdamped RLC model with R=1.413 Ohms, L = 1.67 uH, $C = 400$ uF and $I = 8$ mm

30. Measure

$$
H = \frac{N I_{circuit}}{\ell_{coil}}
$$

Measure: Soft Perm. Magnet

Remanence

• Gauss meter

Coercivity

 • 2.7T Pulse Magnetizer and Gauss meter to create BH graph

31. Measure

Soft Perm. Magnet Remnance

TABLE I.

STRONTIUM FERRITE MAGNETIC CHARACTERISTICS

TABLE I. **MAGNETIC PARTICLES GRADES[13]**

32. Measure

Conclusion

Achieved Tech Specs

ability of a material to support magnetic field development Permeability:

Resistance of a material to be demagnetized Coercivity:

Compliance: Flexibility

Harvard John A. Paulson **School of Engineering** and Applied Sciences

33. Conclusion

Future Work and Potential Impact

- Force Characterization
- Size optimization: $E \sim V$, F $\sim A$
- Soft Permanent Magnet Fabrication
- Soft Coil Optimization H = (N i) / l

• Composite material characterization is of use to those designing soft magnetic devices eg soft motors, soft relays, soft moving iron actuator, soft electromagnetic valves

34. Conclusion

Acknowledgement

- Post Doc. Advisor: Bahar Haghighat
- Thesis Reader: Radhika Nagpal
- Section Leaders: Anas Unaian, Daneil Prendergast
- Active Learning Labs Staff
- ESTUU STATT
- ES 100 peer support group

35. Conclusion

Thank

You!

Harvard John A. Paulson School of Engineering and Applied Sciences

EE SB '20 Billy Koech