
Billy Koech

DrawPrint: Design of a Dry Erase Plotting Device

Billy Koech

Electrical Engineering

Harvard School of Engineering

and Applied Sciences

Cambridge, MA United States of

America

bkoech@college.harvard.edu

Abstract— Pen plotters have many potential applications in

design, visualization and education as teaching aids to name a few.

While numerous pen plotters designs exist online few are designed

for integration with dry erase boards. DrawPrint is a pen plotter

that takes vectorized images and prints them out on a dry erase

board attached to it. This report explores the design and

specifications of DrawPrint.

Keywords—Gcode, two axis motion, microcontroller, linear

actuator

I. INTRODUCTION

Drawprint is designed to print out images onto a dry erase
board. It consists of a two-axis motion system attached onto a
dry erase board using aluminum 80 20 accessories. The two-axis
motion system is actuated by a set of three stepper motors. The
stepper motors translate the torque via a GT2 timing belt. The
stepper motors are controlled by an Arduino Mega 2560
microcontroller. High level functionality such as image parsing,
vectorization, translation and resizing is written in a high-level
language(python) and can be executed on any microcontroller
or computer with a python installation. Communication between
the low-level microcontroller(Arduino) and the high-level
microcontroller(Raspberry Pi) is done through USB serial.

This report follows the following structure. Section II
presents the mechanical design of the device and the technical
specifications of the stepper motors. Section III discusses the
circuit design and technical specifications for interfacing
between the stepper motors and the low-level microcontroller. It
then transitions to Section IV for a walkthrough of the functions
and Finite State Machine(FSM) written to control the stepper
motors. This is then followed by a walkthrough in Section V of
the high-level modules written in python for parsing vectorized
image data and converting them to instruction for the device.
Finally, Section VI discusses the challenges and potential areas
of improvement.

II. MECHANICAL DESIGN

A. Two Axis motion system.

The entire two axis motion system is built on an aluminum
80 20 frame. The dimensions of the frame were measured to
match that of a dry erase board of size 816 by 1096 Appendix I
consist of a drawing package that documents the dimensions of
each component.

X motion is achieved by two sets of three wheels that ride on
aluminum 80 20 bars as shown in Figure 1. One set sits at the
top and the other at the bottom. The three wheels are held in

place by a custom designed acrylic plate in the shape of a
triangle also shown in Figure 1.

Fig. 1. Top X axis roller. X axis motion is achieved through a set of three

wheels that ride on an aluminum 80 20 bar

The top and bottom roller are connected together via a
vertical bar on which another Roller is placed in order to achieve
Y axis motion(shown in Figure 2). With this setup the device is
capable of traversing a two-dimensional space. The torque to
move these three rollers is translated via a GT2 timing belt
driven be stepper motors. The GT2 timing belt is attached onto
the rollers belt slots and fastened in place using cable ties.

B. Z axis – linear actuatuaton.

The rack and gear setup shown in figure 2 allows for linear
actuation by converting the rotational motion of a servo motor
into a linear one. A dry erase marker which serves as a drawing
tool is mounted onto the end of the rack. In order to detect when
the pen reaches the wall, a button is place between the rack and
the marker which then gets triggered when force is exerted on it.

C. Stepper motors

The X axis rollers are driven by two stepper motors(one at
the top and another at the bottom) to prevent any skewing. The
motor used here is a 12V DC NEMA 17 1.8 degrees 2-phase
stepper motor with a GT2 timing pulley wheel with a pitch
diameter of 12.73mm. Using the NEMA 17 datasheet, the
calculations below are done in order to determine that the step
size:

Pitch diameter of pulley, D = 12.73mm

Circumference of pulley = 𝜋𝐷 = 𝜋 𝑥 12.73mm = 39.99 mm

Step Size =
1.8 𝑑𝑒𝑔𝑟𝑒𝑒𝑠

360 𝑑𝑒𝑔𝑟𝑒𝑒𝑠
 𝑥 39.99𝑚𝑚 = 0.2𝑚𝑚

The Y axis roller is driven by a 12V DC Unipolar 4 phase
Howard Ind. P/N 1-19-4202 motor with a step angle of 3.6
degrees. The resulting step size is 0.4mm (twice the step size of
the NEMA 17 motor). Section V shows how the difference in
step sizes is factored into the code in order to achieve 1:1 aspect
ratio when moving both axes by the same distance.

Fig. 2. Y axis roller with linear actuator mounted

III. CIRCUIT DESIGN

A. System Block diagram

Figure 3 and 4 show the system block diagrams for the
actuator system and the sensor system. The actuator system
starts from the high-level microcontroller where images are
parsed to generate coordinates that are then passed to the low-
level microcontroller over USB serial. The low-level
microcontroller then sends signals to modulate the motor
controllers which then move the motors.

Fig. 3. Actuator system Diagram

 Four stop switches are installed on the ends of two axes in
order to serve as limit detectors. The system diagram
below(Figure 4) shows these switches including the button
connected to the Z motion marker. The stop switches are active
high, and they are also connected to a CD4072B CMOS OR gate
which sends its output to an interrupt pin of an Arduino. The
purpose of this is to interrupt the procedural flow of the
microcontroller’s program in case any stop switch is pressed
while printing.

Fig. 4. Sensors system Diagram

B. Motor Controller Circuit.

Below are the electrical specifications of the stepper motors
used:

TABLE I. STEPPER MOTOR ELECTRICAL SPECIFICATIONS

Motor Specifications

Specification
NEMA

17

Howard Ind. P/N 1-19-

4202

Rated Voltage (V) 12 12

Rated Current(mA) 350 150

 Given these motor specifications, the L293D Quadruple half
H Motor Driver is selected as a driver because it’s Voltage
supply range (4.5 – 3.6 V) encompasses that needed for the
stepper motors and it has a peak output current of 1.2A Per
channel. Figure 5 shows the circuit diagram for X top stepper.
The circuit diagram for the other stepper motors resembles that
of the X top stepper. A full schematic diagram of all the circuits
is included in Appendix II and III.

Fig. 5. Circuit diagram for motor contoller driving the X top stepper

C. Linear Actuator

A 180-degree servo motor with a 3D printed rack and gear
attachment is used to realize linear actuation for the purpose of
engaging and disengaging the marker from the dry erase board.
Figure 6 below shows the circuit diagram for the servo:

Fig. 6. Servo motor circuit for linear actuator

D. Stop Switches

 The common terminal of each stop switch is connected
to 5V source and the normally open(NO) terminal is connect
to a 10K pull down resistor to make the switches active high.
Each of the NO terminals is connected to a CD4072B CMOS
OR gate whose output is connected to the interrupt pin of the
Arduino Mega 2560. Figure 7 below shows the circuit
diagram for the stop switches.

Fig. 7. Stop switch schematic

IV. SOFTWARE DESIGN - LOW LEVEL MICROCONTROLLER

As mentioned previously, the microcontroller used in this
project is the Arduino Mega 2560. It was chosen because it has
a higher number of IO pins and more memory in comparison to
other Arduino models. The total number of pins used in this
project is 22. The full program is provided in Appendix IV.
Section A below is dedicated to walking through the functions
implemented in the C program. Section B discusses the FSM
design.

A. Functions and Abstractions

The C program consists of the following core functions each
of which is discussed in this section:

• Move_y

• Move_x

• Move_z_linear

• Probe_z

• Move_axes

• Go_to_coordinates

• Calibrate

• Set_x_y

• ListenToPi

• ParseSerialData

The C program uses the stepper library in order control the
steppers. Stepper library consists of an abstracted class called
Stepper from which objects are instantiated by passing the
following parameters respectively: number of steps per
revolution, A lead of winding 1, B lead of winding 1, A lead of
winding 2, B lead of winding 2. The code block below shows
the instantiation of the three steppers:

// Initialize stepper object for x

motion

Stepper xTopStepper (200, X_TOP_PIN_1,

X_TOP_PIN_2, X_TOP_PIN_3, X_TOP_PIN_4);

Stepper xBtmStepper (200, X_BTM_PIN_1,

X_BTM_PIN_2, X_BTM_PIN_3, X_BTM_PIN_4);

// Initialize stepper object for y

motion

Stepper yStepper (200, Y_PIN_1, Y_PIN_2,

Y_PIN_3, Y_PIN_4);

Motion in the X axis is facilitated by two stepper
motors(one at the top and one at the bottom). Since programs
written in the Arduino IDE cannot write to multiple pins
simultaneously a function that alternates between the top and
bottom stepper motor is implemented as show below:

//x forward motion function

void move_x(int no_of_steps) {

 for (int i=1; i <= abs(no_of_steps);

i++){

 // move top x stepper

 xTopStepper.step(-

1*(no_of_steps/abs(no_of_steps)));

 // move bottom x stepper

xBtmStepper.step(no_of_steps/abs(no_of_s

teps));

 }

}

Motion in the Y axis relies on just one motor therefore the
Stepper library’s step() function is sufficient; Move_y is a
wrapper of step().

Motion in the Z direction is facilitated by a Servo motor. In
the default state, the write function of the servo library takes an
angle θ as a parameter and turn the servo to that angle. In order
to achieve a rotation by θ instead of a rotation to θ, the function
below uses a global variable z_pos to keep track of the position
of the servo and from that position make adjustments:

// update z angle and write to servo

 z_pos += angle_step_size;

 zServo.write(z_pos);

 In order to ensure that the pen touches the board when
drawing, a probing function is written to measure and record the
distance to the board. This function is called when the device is
being calibrated.

int probe_z(void){

 int depth;

 while(!zCalibrateFlag){

 Serial.println("Calibration: probing

z");

 if(!digitalRead(SHARPIE_BTN)){

 zCalibrateFlag = true; // reset

 depth = z_pos; // store

 reset_z(); // go home

 break;

 }

 move_z_linear(1);

 }

 return depth;

}

 In order to achieve diagonal motion, the X steppers and Y
stepper would have to move at the same time. However, since
Arduino IDE C programs cannot write to multiple pins
simultaneously, a method similar to that of moving the X axis
stepper is implemented in Move_axes. Move_axes follow the
following conditions :

• If either X or Y is zero then move the non-zero axis; this
is the normal single axis linear motion

• If X and Y are equal then alternate between the two axes
moving each by one step to achieve motion along a 45°
angle.

• If Y is greater than X then find the ratio Y/X and move
the X-axis once for every Y/X steps in the Y-axis
direction.

• If X is greater than Y then find the ration X/Y and move
the Y-axis once for every X/Y steps in the X-axis
direction.

 The code for this is attached in the Appendix IV.

 The go_to_coordinates functions is an abstraction of the
move_axes function. It finds the difference between the current
position(stored in a global variable) and the destination and
passes that difference to the move_axes function as shown
below.

void go_to_coordinates(int x, int y, int

z){

 // find difference between current

position and next position

 int x_diff = x - x_pos;

 int y_diff = y - y_pos;

 int z_diff = z - z_pos;

 //move to new postion and set x_pos,

y_pos and z_pos

 move_axes(x_diff, y_diff, z_diff);

 x_pos = x;

 y_pos = y;

 // z is updated in move_axes

}

 The calibrate function is used to measure the width and
height of the plane of motion and return the device to its origin.
It leverages the stop switches to determine the limits. Below is
the algorithm for calibration:

• Move to the left until the switch is triggered. Move to the
right while counting steps. Return to the left. Reset global
X position variable to zero.

• Move to the bottom until the switch is triggered. Move
to the top while counting steps. Return to the bottom.
Reset global Y position variable to zero.

The code for this is attached in the Appendix IV.

 The purpose of the set_x_y function is to return the axes to
home position and then apply an offset from the edges so as to
keep the stop switches from constantly being pressed. The code
for this is attached in Appendix IV.

 The listenToPi function as the name suggests listens to the
serial port for serial data. When serial data is available the
function stores the data as an array of characters. The python
program(discussed later in Section V) is designed to follow the
following specific format when sending commands over serial:

GCODE,X,Y,Z\n

The parseSerialData function therefore iterates over the
characters and extracts values for GCODE, X,Y and Z and
storing them in global variables. The code for both listentoPi and
parseSerialData is attached in the Appendix IV

B. Finite State Machine(FSM)

The main routine is written as an FSM with 5 states:

• Reset state

• Set home state

• Calibration State

• Listen State

• Print State

 The transition table 2 below shows the Present State and
Next State(PSNS) conditions:

TABLE II. FSM STATES TRANSITION TABLE

PSNS table

Current State Output Input Next State

RESET
Low power

mode

Wake up from

interrupt pin
SET HOME

 (No input) RESET

SET HOME

Go

home(0,0,0)

and probe Z

Never

calibrated(first

time running)

CALIBRATION

 Calibrated LISTEN

CALIBRATION

Invoke

calibrate()

function

Not calibrated

CALIBRATION

 Calibrated SET HOME

LISTEN

Listen and

parse serial
data

“calibrate”

command from
serial

CALIBRATE

“complete”

command from

serial

RESET

G-code data from

serial
PRINT

 (No input) LISTEN

PRINT

Move axes to

G-code

(print)

Rollers triggering

stop switch

(error)

SET HOME

 (No input) LISTEN

C. Interrupt Service Routine(ISR)

Two interrupt service routines are included in this program.
The first has already been discussed in circuit design section
(stop switch interrupt): if any of the stop switches are triggered
while the device is in the PRINT state then the motors are shut
down and an error flag variable is toggled. This stops the device
from damaging any of the parts. Once the issue has been
resolved the device resumes printing from where it left off.

The second ISR function is invoked by a reset button should
the user decide to stop the device. This function shuts down the
motor drivers indefinitely until the microcontroller is restarted.

V. SOFTWARE DESIGN – HIGH LEVEL MICROCONTROLLER

The python program and modules written for this device is
intended to be executed in a raspberry pi. However, it is also
compatible with computers that have the pyserial module and
much of the empirical design and study of this device was done
via serial communication from a computer. G-code used in those
experiments is generated from an open source online module
(cba mods) that converts png images to G-code files[1]. This
section is dedicated to discussing how G-code is parsed using
the gcode_parser.py module the interface between the python
program and Arduino using the Ardino_interface.py module.

A. Main application

The main application takes user input from a G-code file. It

then uses the gcode_parse.py module to parse the G-code into

a format compatible with the listenToPi function(implemented

in C Arduino) that has already been discussed in Section IV.

The application then loops through the G-code file while

sending each line to Arduino via serial using

ArduinoInterface.py module. The code for the modules and the

main application can be found in Appendix V.

B. G-code parser module

The G-code parser module consists of two main functions:

• Parse_gcode

• Rescale

 The G-code parser module consists of two main functions:
Parse_gcode function takes a G-code file and simplifys it by
omitting G-code instruction that are irrelevant to DrawPrint such
as rotation speed. It creates a sequence of strings that follow this
general format: GCODE,X,Y,Z

 The Rescale function takes an already parsed list and
rescales the image such that the largest dimension of the image
is as large as it’s corresponding axis on the printer in terms of
number of steps. Both the length and width of the image are
scaled by the same factor so as to maintain aspect ratio. Since
the step size of the Y stepper is twice as large as the step size of
the X steppers (discussed in Section II C) then the Y steps are
halved so as to prevent skewing.

C. Serial interface module

 The serial interface module is built on top of the pyserial
module. It consists of two functions

• Response

• Send

Response queries the serial port for data in form of lines and
returns it as a string. Send takes a parsed G-code line and
formats it to match the format below before sending it over
serial:

GCODE,X,Y,Z\n

VI. POTENTIAL AREAS OF IMPROVEMENT

A. Printing rate

 The device is only able to print complete images when
the stepper motors are running at 60rpm. At higher rpm
values(>80rpm) the Y axis stepper motor has tendency to
skip steps due to inertia. This could potentially be improved
by replacing the motor with one of higher torque or adding
one more stepper motor to the Y axis so as to increase the
overall torque.

B. Erasing

 The device does not automatically erase before
printing. An erase feature would allow for the device to
potentially erase and draw at the same time. This would also
be useful as it would save time spent by the user erasing the
board by hand.

C. Cable management

 Cables from the Y roller occasionally get in the way of
bottom X roller. This has the potential to damage the cables
of the Y axis. A flexible tube or a spiral wrap would solve
this challenge.

D. Wireless Printing

 Raspberry pi has the capability of running a local
server that can be accesses by any other device in the local
network. A future area of improvement would be integrating
the open source online cba mods[1] that converts png images
to G-code directly with the printing application. Such a
scenario would allow a user to upload print jobs directly to a
website and have them printed. A website with device
management tools is also a potential future improvement.

 ACKNOWLEDGMENT

 The author gratefully acknowledges the contribution of
Professor David Abrams as an advisor for the Harvard
Independent Research and Study Course (ES91hfr)

REFERENCES

[1] “mods.” [Online]. Available: http://mods.cba.mit.edu/.

[Accessed: 10-Dec-2019].

APPENDIX I – DRAWING PACKAGE

APPENDIX I – DRAWING PACKAGE

APPENDIX I – DRAWING PACKAGE

APPENDIX I – DRAWING PACKAGE

APPENDIX I – DRAWING PACKAGE

APPENDIX I – DRAWING PACKAGE

APPENDIX I – DRAWING PACKAGE

APPENDIX I – DRAWING PACKAGE

APPENDIX I – DRAWING PACKAGE

APPENDIX II – MOTOR CONTROLLER SCHEMATIC

APPENDIX IV – STOP SWITCH CIRCUIT SCHEMATIC

APPENDIX IV – ARDUINO C CODE

/*

Skeleton created by Billy Koech

Nov 15 2019

mru:

-- BKK Nov 2019 - added move_z_linear

-- BKK Nov 2019 - refactored move_axes to traverse other angles

-- BKK Nov 2019 - updated calibrate function

-- BKK Nov 2019 - added set_x_y function

-- BKK Nov 2019 - added a reset switch

-- BKK Nov 2019 - Implemented FSM

-- BKK Dec 2019 - Removed all scratch and testing code

*/

//Declaration of pin numbers

// X TOP

#define X_TOP_PIN_1 44

#define X_TOP_PIN_2 45

#define X_TOP_PIN_3 46

#define X_TOP_PIN_4 47

//X BOTTOM

#define X_BTM_PIN_1 38

#define X_BTM_PIN_2 39

#define X_BTM_PIN_3 40

#define X_BTM_PIN_4 41

// Y STEPPER

#define Y_PIN_1 50

#define Y_PIN_2 52

#define Y_PIN_3 51

#define Y_PIN_4 53

//ENABLE PINS

#define Y_EN 34

#define X_TOP_EN 35

#define X_BTM_EN 33

// STOP SWITCHES

#define ALL_STOP_INTERRUPT 2

#define LEFT_STOP 3

#define RIGHT_STOP 4

#define TOP_STOP 6

#define BOTTOM_STOP 5

#define RST_INTERRUPT 18

// Sharpie

#define SHARPIE_BTN 13

APPENDIX IV – ARDUINO C CODE

//linear actuator servo

#define SERVO_PIN 12

// Load libraries and modules

#include <Stepper.h>

#include <Servo.h>

//Constants and Variables

int x_stepCount = 0; // number of steps it takes to cover the entire x length

int y_stepCount = 0; // number of steps it takes to cover the entire y length

int z_depth = 0;

int x_pos = 0; //default x position in steps

int y_pos = 0; //default y position in steps

int z_pos = 0; //default z position in degrees

// String data

String receivedData = "";

String parsed_g= "";

String parsed_x = "";

String parsed_y = "";

String parsed_z = "";

// Flags

bool serialDoneFlag = false;

bool zCalibrateFlag = false;

bool axesCalibration = false;

bool wakeUp = true;

bool errorFlag = false;

// FSM variables

int CurState;

int PrevState;

// Initialize stepper object for x motion

Stepper xTopStepper(200,X_TOP_PIN_1,X_TOP_PIN_2,X_TOP_PIN_3,X_TOP_PIN_4);

Stepper xBtmStepper(200, X_BTM_PIN_1,X_BTM_PIN_2,X_BTM_PIN_3,X_BTM_PIN_4);

// Initialize stepper object for y motion

Stepper yStepper(200,Y_PIN_1,Y_PIN_2,Y_PIN_3,Y_PIN_4);

//x forward motion function

void move_x(int no_of_steps) {

APPENDIX IV – ARDUINO C CODE

 for (int i=1; i <= abs(no_of_steps); i++){

 xTopStepper.step(-1*(no_of_steps/abs(no_of_steps))); // move top x stepper

 xBtmStepper.step(no_of_steps/abs(no_of_steps)); // move bottom x stepper

 }

}

//y motion function

void move_y(int no_of_steps) {

 yStepper.step(no_of_steps); // move top y stepper

}

// create servo object to control a servo

Servo zServo;

// params: angle size to move by. Negative values move backwards

void move_z_linear(int angle_step_size){

 // make sure final value is between 0 and 180

 if((z_pos + angle_step_size) < 181 && (z_pos + angle_step_size) > -1){

 // update z angle and write to servo

 z_pos += angle_step_size;

 zServo.write(z_pos);

 }else{

 // cant move any further

 Serial.print("Warning: z range limit reached. Z value");

 Serial.print(z_pos + angle_step_size);

 Serial.print("\n");

 }

}

// call this routine to reset z

void reset_z(void){

 z_pos = 0;

 zServo.write(z_pos);

}

int probe_z(void){

 int depth;

 while(!zCalibrateFlag){

 Serial.println("Calibration: probing z");

 if(!digitalRead(SHARPIE_BTN)){

 zCalibrateFlag = true; // reset flag

 depth = z_pos; // store depth

 reset_z(); // go back home

 break;

 }

APPENDIX IV – ARDUINO C CODE

 move_z_linear(1);

 }

 return depth;

}

// function to move all 3 axes simultaneosly

// takes x steps to move, z angle to set servo to and y steps to move

// Written to traverse different angles

void move_axes(int x_steps, int y_steps, int z_angle_steps){

 int xsteps = abs(x_steps);

 int ysteps = abs(y_steps);

 int ratio;

 // Move x and y at the same time

 //ratio between x and y

 if(y_steps==0){

 move_x(x_steps);

 }else if(x_steps==0){

 move_y(y_steps);

 }else if(y_steps==x_steps){

 while(xsteps!=0 || ysteps!=0){

 move_x(x_steps/abs(x_steps));

 xsteps -= 1;

 move_y(y_steps/abs(y_steps));

 ysteps -= 1;

 }

 }else if(ysteps>xsteps){

 ratio = ysteps/xsteps;

 while(ysteps>0){

 // for every step in x, move y by ratio

 move_x(x_steps/abs(x_steps)); // one step

 move_y(y_steps/abs(y_steps) * ratio); // one * ratio steps

 ysteps -= ratio;

 }

 }else if(xsteps>ysteps){

 ratio = xsteps/ysteps;

 while(xsteps>0){

 // for every step in y, move x by ratio

 move_y(y_steps/abs(y_steps)); // one step

 move_x(x_steps/abs(x_steps) * ratio); // one * ratio step

 xsteps -= ratio;

 }

 }else{

APPENDIX IV – ARDUINO C CODE

 Serial.println("Error: Undefined calibration condition");

 }

 // Move z

 move_z_linear(z_angle_steps);

}

void go_to_coordinates(int x, int y, int z){

 // find difference between current position and next position

 int x_diff = x - x_pos;

 int y_diff = y - y_pos;

 int z_diff = z - z_pos;

 //move to new postion and set x_pos, y_pos and z_pos

 move_axes(x_diff, y_diff, z_diff);

 x_pos = x;

 y_pos = y;

 // z is automatically updated

}

// calibration function

void calibrate(void){

 /* Step 1: Calibrate

 * Move hub towards -x until switch is triggered at the end

 * Move hub towards -y until switch is triggered at the top

 * Move +x while counting steps, store number of steps. No. of Steps = width.

 * Move -y while counting steps, store number of steps. No. of Steps = height.

 * Move hub back to origin, x = 0, y = 0

 */

 // flags

 bool leftTriggered = false;

 bool rightTriggered = false;

 bool topTriggered = false;

 bool btmTriggered = false;

 int switch_offset = 2; // steps away from switch

 x_stepCount = 0; // reset

 y_stepCount = 0; // reset

 // while left not triggered

 while(!leftTriggered){

 Serial.println("Calibration: moving left");

 // move x to left until switch is trigerred

 move_x(-1);

 if(digitalRead(LEFT_STOP)){

 leftTriggered = true;

 break;

APPENDIX IV – ARDUINO C CODE

 }

 }

 // while right not triggered

 while(!rightTriggered){

 Serial.println("Calibration: moving right");

 if(digitalRead(RIGHT_STOP)){

 rightTriggered = true;

 break;

 }

 // move x to right until switch is trigerred

 move_x(1);

 x_stepCount +=1; // count steps

 }

 //Todo: check step count and see if it matches empirical value

 move_x(-x_stepCount);//go back to origin

 x_pos = 0; //reset x coordinate to 0

 Serial.println("X calibration complete");

 //while bottom not triggered

 while(!btmTriggered){

 Serial.println("Calibration: moving down");

 if(digitalRead(BOTTOM_STOP)){

 btmTriggered = true;

 break;

 }

 // move y to bottom until switch is trigerred

 move_y(-1);

 }

 while(!topTriggered){

 Serial.println("Calibration: moving up");

 if(digitalRead(TOP_STOP)){

 topTriggered = true;

 break;

 }

 // move y to top until switch is trigerred

 move_y(1);

 y_stepCount +=1; // count steps

 }

 //Todo: check step count and see if it matches empirical value

 move_y(-y_stepCount);//go back to origin

 y_pos = 0; //reset y coordinate to 0

 Serial.println("Y calibration complete");

APPENDIX IV – ARDUINO C CODE

 Serial.print("X step count: ");

 Serial.println(x_stepCount);

 Serial.print("Y step count: ");

 Serial.println(y_stepCount);

}

// Function to go to home

void set_x_y(void){

 // flags

 bool leftTriggered = false;

 bool btmTriggered = false;

 int switch_offset = 100; // steps away from switch

 // while left not triggered

 while(!leftTriggered){

 Serial.println("Calibration: moving left");

 // move x to left until switch is trigerred

 move_x(-1);

 if(digitalRead(LEFT_STOP)){

 leftTriggered = true;

 break;

 }

 }

 //move away from switch

 move_x(switch_offset);

 x_pos = 0; //reset x coordinate to 0

 Serial.println("X home set");

 //while bottom not triggered

 while(!btmTriggered){

 Serial.println("Calibration: moving down");

 if(digitalRead(BOTTOM_STOP)){

 btmTriggered = true;

 break;

 }

 // move y to bottom until switch is trigerred

 move_y(-1);

 }

 //move away from switch

 move_y(switch_offset);

 y_pos = 0; //reset y coordinate to 0

 Serial.println("Y home set");

APPENDIX IV – ARDUINO C CODE

}

// fuction to listen for commands from master(Raspberry Pi)

void listenToPi() {

 serialDoneFlag = false;

 // Serial.print("Listening for serial data... \n");

 // Wait for data to be available

 while (Serial.available() > 0) {

 // store received data as a string

 // get new byte

 char inChar = (char)Serial.read();

 //add it to the receivedData

 receivedData += inChar;

 //break loop if incoming character is a new line

 if(inChar == '\n'){

 //if data received then break

 serialDoneFlag = true;

 break;

 }

 }

}

 void parseSerialData(String data){

 // variable to keep track of comma position

 //GCODE,X,Y,Z\n

 int commas = 0;

 //reset variables

 parsed_g= "";

 parsed_x = "";

 parsed_y = "";

 parsed_z = "";

 //iterate over data. 200 is the buffer size limit

 for(int i=0; i<=200; i++){

 //parse data

 if (data[i] == '\0'){ //end of data

 break; // exit

 }else if(data[i] != ',' && commas == 0){

 //get g part of g code

 parsed_g += data[i];

 }else if(data[i] !=',' && commas == 1){

APPENDIX IV – ARDUINO C CODE

 // get x value

 parsed_x += data[i];

 }else if (data[i] !=',' && commas == 2){

 // get y value

 parsed_y += data[i];

 }else if (data[i] !=',' && commas == 3){

 //get z value

 parsed_z += data[i];

 }

 //comma incrementation

 if(data[i] == ','){

 commas += 1;

 }else{

 // do nothing

 }

 }

 }

void setup() {

 //speed

 xTopStepper.setSpeed(60); //rpms

 xBtmStepper.setSpeed(60); //rpms

 yStepper.setSpeed(60); //rpms

 // attaches the servo on pin 9 to the servo object

 zServo.attach(SERVO_PIN);

 // reserve 200 bytes for the receivedData:

 receivedData.reserve(200);

 //reserve

 parsed_g.reserve(5);

 parsed_x.reserve(5);

 parsed_y.reserve(5);

 parsed_z.reserve(5);

 // initialize the serial port:

 Serial.begin(9600);

 //setup pinmode for actuators

 pinMode(X_TOP_PIN_1, OUTPUT);

 pinMode(X_TOP_PIN_2, OUTPUT);

 pinMode(X_TOP_PIN_3, OUTPUT);

 pinMode(X_TOP_PIN_4, OUTPUT);

 pinMode(X_BTM_PIN_1, OUTPUT);

 pinMode(X_BTM_PIN_2, OUTPUT);

 pinMode(X_BTM_PIN_3, OUTPUT);

 pinMode(X_BTM_PIN_4, OUTPUT);

APPENDIX IV – ARDUINO C CODE

 pinMode(Y_PIN_1, OUTPUT);

 pinMode(Y_PIN_2, OUTPUT);

 pinMode(Y_PIN_3, OUTPUT);

 pinMode(Y_PIN_4, OUTPUT);

 pinMode(Y_EN, OUTPUT);

 pinMode(X_TOP_EN, OUTPUT);

 pinMode(X_BTM_EN, OUTPUT);

 // set pinmode for sensors

 pinMode(ALL_STOP_INTERRUPT, INPUT);

 pinMode(LEFT_STOP, INPUT);

 pinMode(RIGHT_STOP, INPUT);

 pinMode(TOP_STOP, INPUT);

 pinMode(BOTTOM_STOP, INPUT);

 pinMode(SHARPIE_BTN, INPUT_PULLUP);

 pinMode(RST_INTERRUPT, INPUT_PULLUP);

 //Make sure drivers are off

 digitalWrite(X_TOP_EN, LOW);

 digitalWrite(X_BTM_EN, LOW);

 digitalWrite(Y_EN, LOW);

 // reset angle for sharpie

 reset_z();

 //attach interupts

 attachInterrupt(digitalPinToInterrupt(ALL_STOP_INTERRUPT), isr, RISING);

 attachInterrupt(digitalPinToInterrupt(RST_INTERRUPT), shutdown_motors, FALLING);

 //initialize fsm

 CurState = 0;

 PrevState = -1; // undefined

 Serial.println("Initialized");

}

void loop() {

 // put your main code here, to run repeatedly:

 // print state if state has changed

 if(CurState != PrevState){

 Serial.print("Current State: ");

 Serial.println(CurState);

 }

 // Update previous state

 PrevState = CurState;

 // FSM goes here

 switch (CurState){

 case 0: // RESET STATE

APPENDIX IV – ARDUINO C CODE

 // Low power mode

 // disable motor drivers

 digitalWrite(X_TOP_EN, LOW);

 digitalWrite(X_BTM_EN, LOW);

 digitalWrite(Y_EN, LOW);

 // wait for interrupt from raspberry pi

 if(wakeUp){

 // go to home

 CurState = 1;

 }else{

 // stay in current state

 CurState = 0;

 }

 break;

 case 1: //SET X Y HOME

 // enable motor drivers

 digitalWrite(X_TOP_EN, HIGH);

 digitalWrite(X_BTM_EN, HIGH);

 digitalWrite(Y_EN, HIGH);

 // go to home

 set_x_y();

 z_depth = probe_z();

 Serial.print("Probed z val: ");

 Serial.println(z_depth);

 if(!axesCalibration){

 // calibrate

 CurState = 2;

 }else{

 // listen state

 CurState = 3;

 }

 break;

 case 2: // CALIBRATION STATE

 calibrate();

 axesCalibration = true;

 // if not calibrated stay

 if(!axesCalibration){

 // calibrate

 CurState = 2;

 }else{

APPENDIX IV – ARDUINO C CODE

 // set home state

 CurState = 1;

 }

 break;

 case 3: // LISTEN STATE

 listenToPi(); // retrieve data

 // process data

 if(serialDoneFlag){

 // parse data

 parseSerialData(receivedData);

 // reset data holder

 receivedData = "";

 // Wait for data to be processed

 if(parsed_g == "" || parsed_x == "" || parsed_y == "" || parsed_z ==

""){

 Serial.print("<---Something has not loaded yet --->");

 }else{

 Serial.print("<---Loaded --->");

 }

 //print parsed data

 Serial.println("parsed_g: " + parsed_g);

 Serial.println("parsed_x: " + parsed_x);

 Serial.println("parsed_y: " + parsed_y);

 Serial.println("parsed_z: " + parsed_z);

 }

 // process inputs

 if(parsed_g == "calibrate"){

 CurState = 2; //calibration state

 }else if(parsed_g == "complete"){

 CurState = 0; // go back to reset state

 }else if(parsed_g == "G00Z" || parsed_g == "G01Z" || parsed_g == "G00X" ||

parsed_g == "G01X" || parsed_g == "Z"){

 CurState = 4; // print

 }else{

 CurState = 3; // stay here

 }

 break;

 case 4: // PRINT STATE

 // To do: optimize for rapid motion when not printing

 // for z axis indipendent motion

 if(parsed_g == "G00Z" || parsed_g == "G01Z" || parsed_g == "Z"){

 go_to_coordinates(x_pos, y_pos, parsed_z.toInt() * z_depth);

 // normal motion

APPENDIX IV – ARDUINO C CODE

 }else{

 go_to_coordinates(parsed_x.toInt(), parsed_y.toInt(), parsed_z.toInt() *

z_depth);

 }

 Serial.println("Done go_to_coordinates");

 // reset parsed data

 parsed_g= "";

 parsed_x = "";

 parsed_y = "";

 parsed_z = "";

 if(errorFlag){

 // if error then reset

 // To do: send message to RPI to pause

 CurState = 1;

 errorFlag = false;

 }else{

 CurState = 3;

 }

 break;

 default:

 Serial.println("Default state");

 break;

 }

}

void shutdown_motors(void){

 //Make sure drivers are off

 digitalWrite(X_TOP_EN, LOW);

 digitalWrite(X_BTM_EN, LOW);

 digitalWrite(Y_EN, LOW);

 reset_z();

}

void isr(){

 Serial.print("STOP SWITCH Triggered, State=>");

 Serial.println(CurState);

 // if printing

 if(CurState == 4){

 //shutdown and reset

 digitalWrite(X_TOP_EN, LOW);

 digitalWrite(X_BTM_EN, LOW);

 digitalWrite(Y_EN, LOW);

 reset_z();

 // calibration required

APPENDIX IV – ARDUINO C CODE

 errorFlag = true;

 }

}

APPENDIX V – A – PYTHON MAIN APPLICATION

"""

Module to send commands data to arduino and drive printer

Created by: skeleton by Billy Koech

Date: Novembe 13 2019

mru(most recent update):

November 13 2019 -

 -

 -

"""

Import modules and libaries

user modules

import ArduinoSerial_Mac_Interface as AI

import gcode_parser as GP

Variables

Constants

Troubleshooting

DEBUG = True

Open file and parse data

file_name = input("File path: ")

if(file_name == ""):

 file_name = "testgcode/square1.nc" # default

else:

 pass # use user input

parsed_data = GP.parse_gcode(file_name) # parse

rescale data to fit to the printer's window

rescaled_parsed_data = GP.rescale(parsed_data)

iterate over data and send line by line

for gcode in rescaled_parsed_data:

 AI.send(gcode) # send

 while ("Done go_to_coordinates" not in AI.response()):

 if(gcode[0] == "Inches" or gcode[0] == "Millimeters"):

 print("Units: " + gcode[0])

 break # skip sending this

 else:

APPENDIX V – A – PYTHON MAIN APPLICATION

 print("Going to coordinates ... " + str(gcode)) # wait for data to be

processed

AI.send(("G01X", "0", "0", "0")) # return home

APPENDIX V – B – PYTHON GCODE PARSER MODULE

"""

Program to parse g-code into a list

Created by: skeleton by Billy Koech

Date: Nov 4th 2019

mru(most recent update):

Nov 8th 2019 - deleted one of the .rstrip() from remove_extras

 - added write_non_string_data function

 - added print statements to start_log() and stop_log()

"""

import modules

global varibles and CONSTANTS

STEP_SIZE = 0.2 # mm per step for NEMA 17 motor

X_LENGTH = 1400 * STEP_SIZE # Replace these with actual dimensions

Y_LENGTH = 550 * STEP_SIZE # Replace these with actual dimensions

DEVICE_X_STEPS = 2000 # steps

DEVICE_Y_STEPS = 2000 # steps

Troubleshooting

DEBUG = True

Function to convert file to lines; reads lines in file

return list of of lines

def get_lines(file_name):

 # open and store in list

 file = open(file_name, "r")

 _data = file.readlines()

 # close

 file.close()

 # remove end of line character

 # new_list = []

 # for el in _data:

 # new_list.append(el.rstrip())

 # return new_list

 return _data

Function to parse G code into action, x, y, z list of tuples

iterate over each element

APPENDIX V – B – PYTHON GCODE PARSER MODULE

def parse_gcode(file_name):

 # convert to list

 g_code_list = get_lines(file_name)

 output = [] # variable to hold output

 for instr in g_code_list:

 # check first three character then parse data; if first val == G00

 # rapid independent Z motion

 if instr[0:4] == "G00Z":

 output.append((instr[0:4], 0, 0, instr[4:instr.index("\n")]))

 # z linear move

 elif instr[0:4] == "G01Z":

 output.append((instr[0:4], 0, 0, instr[4:instr.index(" ")]))

 # x y z rapid move

 elif instr[0:4] == "G00X":

 output.append((instr[0:4], instr[4:instr.index('Y')],

 instr[instr.index("Y") + 1: instr.index("Z")],

 instr[instr.index("Z") + 1: instr.index("\n")]))

 # x y z linear move

 elif instr[0:4] == "G01X":

 output.append((instr[0:4], instr[4:instr.index('Y')],

 instr[instr.index("Y") + 1: instr.index("Z")],

 instr[instr.index("Z") + 1: instr.index("\n")]))

 #

 elif instr[0] == "Z":

 output.append((instr[0], 0, 0, instr[1:instr.index("\n")]))

 elif instr[0:3] == "G20":

 output.append(("Inches", 0, 0, 0))

 elif instr[0:3] == "G21":

 output.append(("Millimeters", 0, 0, 0))

 else:

 pass

 return output

Function to scale x, y, z accordingly

returns list of (Gcode, x, y, z) where x y z are in steps

def rescale(parsed_g_code_list):

 # convert all numbers from str to float

 float_parsed_gcode = []

 for each in parsed_g_code_list:

 # (G code, X, Y, Z)

 float_parsed_gcode.append((each[0], float(each[1]),

 float(each[2]), float(each[3])))

 # store x and y in separate lists

 x_list = []

 y_list = []

 for each in float_parsed_gcode:

 x_list.append(each[1])

APPENDIX V – B – PYTHON GCODE PARSER MODULE

 y_list.append(each[2])

 # find largest y value

 image_height = max(y_list)

 # find largest x value

 image_width = max(x_list)

 # rescale according to the larger dimension

 scale_factor = 1 # variable to store scale factor

 if image_width > image_height:

 scale_factor = DEVICE_X_STEPS / image_width

 elif image_height > image_width:

 scale_factor = DEVICE_Y_STEPS / image_height

 else: # they must be equal

 scale_factor = DEVICE_X_STEPS / image_width

DIVIDED Y BY HALF IN ORDER TO FIX Vertical scaling.

Vertical scaling happens due to difference in motor step sizes

 output = [] # variable to hold output

 for each in float_parsed_gcode:

 output.append((each[0], int(each[1] * scale_factor),

 int((each[2] * scale_factor) / 2),

 int((each[3] * scale_factor) < 0)))

 return output

def main():

 if DEBUG:

 # Test for get_lines

 list_of_lines = get_lines("square-line-png-2.png-2.nc")

 print("\n list of lines: \n")

 for each in list_of_lines:

 print(each)

 # Test for parse_gcode

 print("\n parsed g code data: \n")

 parsed_gcode_data = parse_gcode("square-line-png-2.png-2.nc")

 print(parsed_gcode_data)

 # Test for rescale

 print("\n x y z rescaled and converted to steps: \n")

 rescaled_data = rescale(parsed_gcode_data)

 print(rescaled_data)

 else:

 pass # do nothing

if __name__ == '__main__':

 main()

APPENDIX V – C – PYTHON ARDUINO SERIAL INTERFACE MODULE

"""

Module to communicate with Arduino over serial on a computer

Created by: skeleton by Billy Koech

Date: Nov 1st 2019

mru(most recent update):

Nov 1st 2019 -

 -

 -

"""

Import modules and libaries

import serial

set device and bitrate

ser = serial.Serial('/dev/tty.usbmodem14201', 9600, timeout=0.5) # timeout of 0.5

seconds

Wait for arduino to initialize

while(True):

 serial_data = ser.readline().decode()

 if("Initialized" not in serial_data):

 print(serial_data)

 else:

 break

print("Serial Ready")

get response over serial

def response():

 Response_val = ser.readline().decode()

 print("RESPONSE: " + Response_val + "\n")

 return Response_val

format and send data over serial

def send(_gcode_data):

 # package data

 _data = _gcode_data[0] + "," + str(_gcode_data[1]) + "," + str(_gcode_data[2]) +

"," + str(_gcode_data[3]) + "\n"

 # encode and send command to arduino over serial

 ser.write(_data.encode())

	I. Introduction
	II. Mechanical Design
	A. Two Axis motion system.
	B. Z axis – linear actuatuaton.
	C. Stepper motors

	III. Circuit Design
	A. System Block diagram
	B. Motor Controller Circuit.
	C. Linear Actuator
	D. Stop Switches

	IV. Software Design - Low Level Microcontroller
	A. Functions and Abstractions
	B. Finite State Machine(FSM)
	C. Interrupt Service Routine(ISR)

	V. Software Design – High Level Microcontroller
	A. Main application
	B. G-code parser module
	C. Serial interface module

	VI. Potential Areas of Improvement
	A. Printing rate
	B. Erasing
	C. Cable management
	D. Wireless Printing
	Acknowledgment
	References

