
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©2019 IEEE

Comparative Analysis of the Performance of Matrix

Multiplication and Transposition Using Top Down

Analysis

Billy Koech

CS246: Advanced Computer

Architecture

Electrical Engineering SB

Harvard School of Engineering and

Applied Sciences (SEAS)

Cambridge, United States of America

Abstract—Top Down analysis is performed on four different

programs that implement variations of matrix multiplication

and two different programs that implement matrix

transposition. For matrix multiplication, the first method is a

naïve implementation that involves element by element

multiplication. The second version implements tiled

multiplication as an optimization. The third, utilizes the

optimized matrix library Eigen, and the fourth leverages

another optimized library-OpenBLAS. The results show

Backend Bound bottlenecks dominant are across all these

implementations. In terms of runtime, OpenBLAS performs

best followed by tiled then Eigen then naïve. For matrix

transposition, a naïve implementation that involves element by

element reassignment is compared against a transpose function

from the optimized Eigen library. The results show that the

naïve implementation performs better than the Eigen function

likely due to Eigen’s large Frontend Bound bottleneck.

Keywords—pmu, top down analysis, backend bound,

bottleneck

I. INTRODUCTION (HEADING 1)

Top Down analysis is a method developed by Ahmad
Yassin [1] to quickly identify computational bottlenecks in
out-of-order processors. It reduces hundreds of performance
counters to a few abstracted metrics[2] shown in Figure 1.
Throughout this paper, these metrics will be referenced
directly by the names or by the levels; level 1 refers to the top
most part (Frontend Bond, Bad Speculation, Retiring and
Backend Bound) and level 4 refers to the bottom part(Scalar,
Vector, 3+ports, 2 ports, 1 port, 0 ports, MEM Bandwidth and
MEM latency).

Fig. 1. Top-Down Analysis Hierachy by Ahmad Yasin[1].

This paper leverages a top down analysis python program
written as a wrapper of perf known as pmu-tools [3] to collect
data from performance counters. Pmu-tools is executed on the
following programs

• Naïve Matrix Multiplication

• Tiled matrix multiplication

• Matrix multiplication using the Eigen library

• Matrix multiplication using the OpenBLAS library

• Naïve Matrix transposition

• Matrix transposition using the eigen library

The paper follows the following structure: Section II is
dedicated to discussing the designs for matrix multiplication
implementations. Section III does the same but for matrix
transposition. Section IV discusses the methodology used to
calculate runtimes and to perform top down analysis on the
implemented programs. Section V, VII, present the
performance results in terms of runtime and throughput;
section VI, VIII then discus the performance bottlenecks.

II. MATRIX MULTIPLICATION

A. Naïve

The naïve implementation follows an algorithm that
calculates each entry as a sum of products. The c
implementation is shown of an out_rows x in_cols matrix and
an in_cols x out_cols below:

Fig. 2. Naïve multiplication in C.

for (int i = 0; i < out_rows; i++) {

 for (int j = 0; j < out_cols; j++) {

 for (int k = 0; k < in_cols; k++) {

 int a_index = i * out_cols + j;

 int b_index = i * in_cols + k;

 int c_index = k * out_cols + j;

a[a_index]=a[a_index]+(b[b_index]*c[c_index]);

 }}}

B. Tiled implementation

Tiled multiplication involves splitting the matrix into
smaller blocks(tiles) of equal dimensions and computing the
results of tile by tile. This setup takes advantage of spatial
locality to prevent stalls due to misses. Appendix 1 shows the
c implementation of tiled matrix multiplication where tile_size
is the one side dimension of the tile, tile_row is the number of
tiles per row of the matrix, and in_cols, out_cols are the
dimensions of an out_rows x in_cols matrix and an in_cols x
out_col matrix. This implementation assumes a square matrix
so as to decrease the complexity of sweeping values as
discussed later in the methodology.

C. Eigen Matrix Multiplicaiton

Eigen is a C++ template library for linear algebra[4]. It
provides optimized modules for common matrix and vector
operation such as multiplication. The program used in this
paper is implemented using Eigen’s Matrix class and
leverages the multiplication method provided in the library.
The Implementation is illustrated in Figure 3 where dim is the
matrix dimension (assuming a square matrix).

Fig. 3. Matrix multiplication using Eigen in c.

Fig. 4. Matrix multiplication using OpenBLAS in c.

D. OpenBLAS Matrix Multiplicaiton

OpenBLAS(Basic Linear Algebra Subprograms) is an
optimized library that provides standard interfaces for linear
algebra[5]; amongst it methods, it implement high
performance matrix multiplication based on a publication on
the Anatomy of high performance matrix multiplication[6].
The multiplication program used in this paper uses the routine
cblass_dgemm() to perform multiplication as shown in Figure
4. cblass_dgemm() is an implementation of the equation 1[7].

 𝐶 = α𝐴𝐵 + β𝐶 (1)

III. MATRIX TRANSPOSITION

A. Naïve Transpositon

The naïve implementation of transposition involves
iterative element by element indexing and replacement as
shows in figure 5. The matrix in figure 5 is of dimension rows
x column.

Fig. 5. Naïve Transposition

B. Eigen Transpositon

In addition to multiplication, the Eigen library also has a
member function that computes the transpose of a matrix. A
snippet of the program is shown in Figure 6 below.

Fig. 6. Eigen Transposition

IV. METHODOLOGY

A. Runtime performance measurement

Runtime is calculated using the clock() function of the c
time.h library. The clock is recorded in a variable before
beginning and after the termination of the target operation.
The difference is taken and printed out and the time calculated
as per the example in Figure 7.

#include <iostream>

#include <Eigen/Dense>

MatrixXd output(dim, dim);

MatrixXd m1 = MatrixXd::Random(dim, dim) * 10;

MatrixXd m2 = MatrixXd::Random(dim, dim) * 10;

// multiply and profile

output = m1 * m2;

 cblas_dgemm(CblasColMajor,

 CblasNoTrans,

 CblasTrans,

 MATRIX_ROWS,

 MATRIX_COLS,

 MATRIX_ROWS,

 alpha,

 A,

 MATRIX_ROWS,

 B,

 MATRIX_COLS,

 beta,

 C,

 MATRIX_COLS);

for (int i = 0; i < rows; i++) {

 for (int j = 0; j < cols; j++) {

 a[i * cols + j] = b[j * cols + i];

 }

}

#include <iostream>

#include <Eigen/Dense>

MatrixXd output(dim, dim);

MatrixXd m1 = MatrixXd::Random(dim, dim) * 10;

output = m1.transpose();

Fig. 7. Runtime calculation for transpsositon using Eigen’s transpose

method

B. Top-Down Analysis

Top-Down analysis is done using the toplev.py

[2]analysis program from pmu-tools[3]. It is invoked on the
benchmarks and executed via the scheduling program
HTcondor. The processor on which the programs are run is a
3.6-full on Intel(R) Xeon(R) Platinum 8275CL CPU @
3.00GHz processor.

Each program is drilled down up to four levels deep in the
hierarchy .All the benchmarks were written as single-threaded
programs therefore the following parameter is used to restrict
outputs of toplev.py to just a single threaded:--single-
thread. The programs were also restricted to just a single
core using taskset -c 0 so as to decrease the complexity

of data collected by the performance monitoring units across
all the multiple cores.

All the implementations for multiplication and
transposition are parametrized to take a user defined size for a
matrix and from that compute the results for a square matrix
of given dimension. The following is the selected sweeping
range over which Top-Down analysis is done: 8, 32, 256, 512,
1024, 2048 (that is, 8 refers to an 8 x 8 matrix).

The tiled implementation takes an additional parameter,
tile size, which (as the name suggests) defines the size of the
tile. The following tile size values are used in the sweeping
range when performing top down analysis for just the tiled
implementation: 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024. Note
that if the tile size is larger than the matrix then computation
is skipped. When comparing the performance of the tiled
implementation to the other implementation, the result with
the best performing is used.

For each benchmark the output from toplev.py is

redirected to a csv file using the -x, -o filename.csv

parameters; the csv file is then imported into R (a standard
analysis package) for analysis.

V. MATRIX MULTIPLICATION RESULTS

A. Runtime performance

Figure 8 shows the runtime results for all the benchmarks.
For small matrix sizes up to about 256 by 256, the difference
seems to be marginal as the multiplication is computed within
milliseconds for all the implementations. The differences in
performance become evident for matrices of size 512 by 512
and greater. The OpenBLAS implementation has the highest
performance as it maintains its runtime close to zero even for
larger matrices (such as the 2048 by 2048).

As mentioned in the methodology the tiled
implementation involved sweeping different tile sizes and
selecting the tile size with the lowest runtime to compare
against the other implementations. The performance for

Fig. 8. Runtimes for matrix multiplicaiton implementation

different tile sizes can be seen in Figure 9. Tile size 16 has the
lowest computation time and it is used in the comparison in
Figure 8.

Fig. 9. Runtimes for tiled matrix multiplication

B. Top Down Analysis – Instructions Per Cycle(IPC)

The instructions per cycle (IPC) is measured for each
benchmark and shown below in Figure 10:

Fig. 10. IPC for the four benchmarks. Each facet represent different levels of
Top-Down Analysis. Top left is level 1, top right level 2, bottom left level 3,

bottom right level 4.

 Interesting enough the tiled implementation exhibits
generally high throughput at all four levels. The naïve
implementation’s throughput is observed to decrease as the
matrix size increases. The Eigen implementation exhibits a

start_clock = clock();

output = m1.transpose();

end_clock = clock();

cpu_time = ((double)(end_clock - start_clock))
/ CLOCKS_PER_SEC;

steady throughput rate for matrices of sizes between 256 and
2048 in the first three levels. OpenBLAS exhibits a steady
increase in throughput in the level 1 and level 2. In levels 3
and 4 the throughput seems to decrease up to 1024 where it
spikes up for OpenBLAS.

 As with the tile implementation runtimes, the tile
implementation IPC values were also measured for tiles of
different sizes. This is shown below in Figure 11:

Fig. 11. IPC for tile sizes. Each Facet represents the tile size use to perform

the multiplication. Hence the largest tile size 2048 has only one point the
largest matrix used in this empirical study is 2048 by 2048. The different

colored lines resemble the different Top-Down analysis levels.

Fig. 12. Top Down Analysis of Naïve Implementation.

VI. MATRIX MULTIPLICATION BOTTLENECKS

A. Naïve implementation

From Figure 12 Backend Bound of Top-Down

analysis is flagged in level 1 predominantly across all the

different matrix sizes. Furthermore, the percentage of

execution time as a result of this bottleneck increases as

the matrix increase.

Issues attributed to Backend Bound include data

cache misses or stalls due to divider overload[1]. This

makes sense for the naïve implementation as we expect

more cache misses for larger matrix sizes.

A dive into the next level reveals two dominant

bottlenecks: Core Bound and Memory Bound. As the

matrix size increase the bottleneck shifts from Core

Bound to Memory Bound. This is also expected for naïve

given that Memory Bound can be a result of a load

missing all caches.

At the third level it is revealed that the for larger

matrices the major bottleneck is L3 bound. It also makes

sense for larger matrices because naïve does not take

advantage of spatial locality therefore when misses occur

data has to be fetched from the lowest cache (that is

closest to the memory.) This is furthermore corroborated

at the fourth level where the major bottleneck for large

matrices is L3 Hit latency.

(a)

(b)

(c)

(d)

Fig. 13. Top Down Analysis of Tiled Implementation. The facets represent

tiles of different sizes

B. Tiled implemenation

Similarly, for the tiled implementation at level 1, the
dominant bottleneck is Backend Bound. Three out of the 10
samples (all three of matrix size 256) exhibit Retiring
bottlenecks (Figure 13 (a)) . Further examination in level 2
(Figure 13 (b)) shows that for tile sizes between 2 and 28 the
bottleneck is Core Bound. Matrices computed with tiles of
size 512, 1025 and 2048 exhibit Memory Bound as the major
bottleneck. This makes sense because for large tile sizes, the
multiplication procedure begins to resemble that of naïve.

At the third level (Figure 13 (c)) it is revealed that the
programs that are bottlenecked by Core Bound slots is as a
result of sub optimal port utilization[1]. This is corroborated
at the 4th level (Figure 13 (d)) where large matrix sizes are
limited by sub-optimal port utilization.

C. Eigen Library Implementaion

Eigen Exhibits bottleneck trends similar to that of tiled.
The first level is dominated by Backend Bound (Figure 14 (a))
across the different matrix sizes. In the second level (b) it is
revealed that the bottleneck is Core Bound. The bottleneck for
larger sized matrices seems to be due to sub optimal port
utilization as revealed in level 3 and level 4 (Figure 14 (c) and
(d)).

D. OpenBLAS Library Implementaion

OpenBLAS differs from the rest of the implementation as
it is the only one to exhibit Retiring as a bottleneck for larger
matrix sizes such as 2048 (Figure 15 (a)). Investigation of the
4th level shows that bottleneck lies in Vector Floating Point
(FP) Arithmetic (Figure 15 (d)). This is an indication that
improvement can be made to the code by vectorizing in order
to improve performance. Since a high retiring rate corresponds
to a high IPC [1]we would expect a significant increase in the
IPC if the code’s vectorization is improved.

For the smaller sized matrices, the bottleneck (Figure 15
(a), (b) and (c)) is similar to the previous three
implementations: it is Core Bound

(a)

(b)

(c)

(d)

(a)

 (b)

(c)

(d)

Fig. 14. Top-Down Analysis of Matrix Multiplication using Eigen

(a)

(b)

(c)

(d)

Fig. 15. Top Down Analysis of Matrix multiplication using OpenBLAS

VII. MATRIX TRANSPOSTION RESULTS

A. Runtime performance

Figure 16 shows the runtimes for the naïve implementation
and the eigen implementation of transpose:

Fig. 16. Runtimes for the naïve implementaiton of transpose and the eigen

library transpose function.

Surprisingly, for large size matrices the naïve implementation
seems to perform significantly faster than the eigen inbuilt
transpose function. The bottlenecks for both implementations
are examined in the bottleneck section VIII.

B. Top-Down Analysis – Instruction Per Cycle(IPC)

Fig. 17. IPC for the naïve and eigen transpose implementations are collected

from Top-Down Analysis. Each facet represent different levels of Top-Down

Analysis. Top left is level 1, top right level 2, bottom left level 3, bottom

right level 4.

At the first level the naïve implementation seems to have a
higher throughput than the eigen method. At the other levels
the IPC keeps interchanging between the two
implementations.

VIII. MATRIX TRANSPOSTION BOTTLENECKS

A. Naïve implementation

From Figure18 (a) it can be observed that the

dominant bottleneck across the matrix sizes is Backend

Bound. The percentage of execution time taken by

Backend Bound increases as the matrix size increase from

256 to 2048. In levels 2 3 (Figure 18 (c) and (d)) and the

pmu does not specify the port therefore we cannot narrow

down on the ports involved in the sub optimal port

utilization. However, at level 4 (Figure 18 (d)), for the

largest matrix (2048) the pmu specifics port 1 as the

bottleneck.

B. Eigen Library implementation

From Figure 19 (a) it can be observed that the major

bottleneck for larger sized matrices is Frontend Bound. At

the level 2 and 3 (Figure 19 (b) and (c)) the major

bottleneck is revealed to be Frontend Latency for larger

sized matrices.

The Frontend Latency is a metric accounting for

cases that lead to fetch starvation such as instruction

cache misses and Instruction Length Decoding [1]. This

is likely to be the reason for the significantly low

performance of Eigen library’s transpose method in

comparison to the naïve implementation.

IX. CONCLUSION

 Top-Down analysis is performed on 6 different
programs: Naïve matrix multiplication, Tiled matrix
multiplication, Eigen library matrix multiplication,
OpenBLAS library matrix multiplication, naïve matrix
transposition and Eigen library matrix transposition.

 The first four programs realize the same functionality-
matrix multiplication but the OpenBLAS exhibits the fastest
performance while the naïve exhibits the least performance.
OpenBlAS’s bottleneck lies in the Retiring area(Vector
Floating Point Arithmetic) suggesting that vectorizing it’s
code could further improve it performance. Majority of the
other implications are Backend Bound (Core Bound and
Memory Bound) which is consistent with the challenge of
matrix multiplication – sub optimal port utilization and data
cache misses.

 The last two programs perform matrix transposition. The
results show that the naïve implementation performs better
than the Eigen Library implementation of transpose. We
suggest that this low performance is attributed to Frontend
Latency due to instruction cache misses as per the Top-Down
Analysis results

(a)

 (b)

(c)

(d)

Fig. 18. Top-Down Analysis of naïve transpose

(a)

(b)

(c)

(d)

Fig. 19. Top Down Analysis of transpose using the Eigen library

REFERENCES

[1] A. Yasin, “A Top-Down method for performance analysis and

counters architecture,” in 2014 IEEE International Symposium on

Performance Analysis of Systems and Software (ISPASS), 2014, pp.

35–44.
[2] A. Yasin, “Top-down Microarchitecture Analysis through Linux perf

and toplev tools,” p. 28.

[3] A. Kleen, andikleen/pmu-tools. 2019.

[4] “Eigen.” [Online]. Available:
http://eigen.tuxfamily.org/index.php?title=Main_Page. [Accessed:

22-Nov-2019].

[5] Z. Xianyi, xianyi/OpenBLAS. 2019.

[6] J. Huang and R. A. van de Geijn, “BLISlab: A Sandbox for

Optimizing GEMM,” arXiv:1609.00076 [cs], Aug. 2016.
[7] admin, “Multiplying Matrices Using dgemm,” 17:38:02 UTC.

[Online]. Available: https://software.intel.com/en-us/mkl-tutorial-c-

multiplying-matrices-using-dgemm. [Accessed: 10-Dec-2019].
.

APPENDIX I: TILED MATRIX MULTIPLICATION

for (int it = 0; it < tile_rows; it++) {

 for (int jt = 0; jt < tile_rows; jt++) {

 int a_ti = (tile_size * it * in_cols) + (jt * tile_size);

 for (int kt = 0; kt < tile_rows; kt++) {

 int b_ti = (tile_size * it * in_cols) + (kt * tile_size);

 int c_ti = (tile_size * kt * in_cols) + (jt * tile_size);

 for (int im = 0; im < tile_size; im++) {

 for (int jm = 0; jm < tile_size; jm++) {

 int a_mi = (im * in_cols) + jm + a_ti;

 for (int km = 0; km < tile_size; km++) {

 int b_mi = (im * in_cols) + km + b_ti;

 int c_mi = (km * in_cols) + jm + c_ti;

 a[a_mi] = a[a_mi] + (b[b_mi] * c[c_mi]);

 }

 }

 }

 }

 }

}

	I. Introduction (Heading 1)
	II. Matrix Multiplication
	A. Naïve
	B. Tiled implementation
	C. Eigen Matrix Multiplicaiton
	D. OpenBLAS Matrix Multiplicaiton

	III. Matrix Transposition
	A. Naïve Transpositon
	B. Eigen Transpositon

	IV. Methodology
	A. Runtime performance measurement
	B. Top-Down Analysis

	V. Matrix Multiplication Results
	A. Runtime performance
	B. Top Down Analysis – Instructions Per Cycle(IPC)

	VI. Matrix Multiplication Bottlenecks
	A. Naïve implementation
	B. Tiled implemenation
	C. Eigen Library Implementaion
	D. OpenBLAS Library Implementaion

	VII. Matrix Transpostion Results
	A. Runtime performance
	B. Top-Down Analysis – Instruction Per Cycle(IPC)

	VIII. Matrix Transpostion Bottlenecks
	A. Naïve implementation
	B. Eigen Library implementation

	IX. Conclusion
	References
	Appendix I: Tiled Matrix Multiplication

