
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©2019 IEEE 

Comparative Analysis of the Performance of Matrix 

Multiplication and Transposition Using Top Down 

Analysis 
 

Billy Koech 

CS246: Advanced Computer 

Architecture 

Electrical Engineering SB 

Harvard School of Engineering and 

Applied Sciences (SEAS ) 

Cambridge, United States of America 

  

Abstract—Top Down analysis is performed on four different 

programs that implement variations of matrix multiplication 

and two different programs that implement matrix 

transposition. For matrix multiplication, the first method is a 

naïve implementation that involves element by element 

multiplication. The second version implements tiled 

multiplication as an optimization. The third, utilizes the 

optimized matrix library Eigen, and the fourth leverages 

another optimized library-OpenBLAS. The results show 

Backend Bound bottlenecks dominant are across all these 

implementations. In terms of runtime, OpenBLAS performs 

best followed by tiled then Eigen then naïve. For matrix 

transposition, a naïve implementation that involves element by 

element reassignment is compared against a transpose function 

from the optimized Eigen library. The results show that the 

naïve implementation performs better than the Eigen function 

likely due to Eigen’s large Frontend Bound bottleneck. 

Keywords—pmu, top down analysis, backend bound, 

bottleneck 

I. INTRODUCTION (HEADING 1) 

Top Down analysis is a method developed by Ahmad 
Yassin [1] to quickly identify computational bottlenecks in 
out-of-order processors. It reduces hundreds of performance 
counters to a few abstracted metrics[2] shown in Figure 1. 
Throughout this paper, these metrics will be referenced 
directly by the names or by the levels; level 1 refers to the top 
most part (Frontend Bond, Bad Speculation, Retiring and 
Backend Bound) and level 4 refers to the bottom part(Scalar, 
Vector, 3+ports, 2 ports, 1 port, 0 ports, MEM Bandwidth and 
MEM latency). 

Fig. 1.  Top-Down Analysis Hierachy by Ahmad Yasin[1]. 

This paper leverages a top down analysis python program 
written as a wrapper of perf known as pmu-tools [3] to collect 
data from performance counters. Pmu-tools is executed on the 
following programs 

• Naïve Matrix Multiplication 

• Tiled matrix multiplication 

• Matrix multiplication using the Eigen library 

• Matrix multiplication using the OpenBLAS library 

• Naïve Matrix transposition 

• Matrix transposition using the eigen library 

 

The paper follows the following structure: Section II is 
dedicated to discussing the designs for matrix multiplication 
implementations. Section III does the same but for matrix 
transposition. Section IV discusses the methodology used to 
calculate runtimes and to perform top down analysis on the 
implemented programs. Section V, VII, present the 
performance results in terms of runtime and throughput; 
section VI, VIII then discus the performance bottlenecks. 

II. MATRIX MULTIPLICATION 

A. Naïve 

The naïve implementation follows an algorithm that 
calculates each entry as a sum of products. The c 
implementation is shown of an out_rows x in_cols matrix and 
an in_cols x out_cols below: 

 

Fig. 2. Naïve multiplication in C. 

for (int i = 0; i < out_rows; i++) { 

    for (int j = 0; j < out_cols; j++) { 

      for (int k = 0; k < in_cols; k++) { 

        int a_index = i * out_cols + j; 

        int b_index = i * in_cols + k; 

        int c_index = k * out_cols + j; 

       
a[a_index]=a[a_index]+(b[b_index]*c[c_index]); 

      }}} 

 



 

B. Tiled implementation 

Tiled multiplication involves splitting the matrix into 
smaller blocks(tiles) of equal dimensions and computing the 
results of tile by tile. This setup takes advantage of spatial 
locality to prevent stalls due to misses. Appendix 1 shows the 
c implementation of tiled matrix multiplication where tile_size 
is the one side dimension of the tile, tile_row is the number of 
tiles per row of the matrix, and in_cols,  out_cols are the 
dimensions of an out_rows x in_cols matrix and an in_cols x 
out_col matrix. This implementation assumes a square matrix 
so as to decrease the complexity of sweeping values as 
discussed later in the methodology. 

C. Eigen Matrix Multiplicaiton 

Eigen is a C++ template library for linear algebra[4]. It 
provides optimized modules for common matrix and vector 
operation such as multiplication. The program used in this 
paper is implemented using Eigen’s Matrix class and 
leverages the multiplication method provided in the library. 
The Implementation is illustrated in Figure 3 where dim is the 
matrix dimension (assuming a square matrix).  

 

Fig. 3. Matrix multiplication using Eigen in c. 

Fig. 4. Matrix multiplication using OpenBLAS in c. 

 

D. OpenBLAS Matrix Multiplicaiton 

OpenBLAS(Basic Linear Algebra Subprograms) is an 
optimized library that provides standard interfaces for linear 
algebra[5]; amongst it methods, it implement high 
performance matrix multiplication based on a publication on 
the Anatomy of high performance matrix multiplication[6]. 
The multiplication program used in this paper uses the routine 
cblass_dgemm() to perform multiplication as shown in Figure 
4. cblass_dgemm() is an implementation of the equation 1[7]. 

        𝐶 =  α𝐴𝐵 +  β𝐶      (1) 

 

III. MATRIX TRANSPOSITION 

A. Naïve Transpositon 

The naïve implementation of transposition involves 
iterative element by element indexing and replacement as 
shows in figure 5. The matrix in figure 5 is of dimension rows 
x column.  

Fig. 5. Naïve Transposition  

B. Eigen Transpositon 

In addition to multiplication, the Eigen library also has a 
member function that computes the transpose of a matrix. A 
snippet of the program is shown in Figure 6 below. 

Fig. 6. Eigen Transposition  

 

IV. METHODOLOGY 

A. Runtime performance measurement 

Runtime is calculated using the clock() function of the c 
time.h library. The clock is recorded in a variable before 
beginning and after the termination of the target operation. 
The difference is taken and printed out and the time calculated 
as per the example in Figure 7. 

 

 

 

#include <iostream> 

#include <Eigen/Dense> 

 

MatrixXd output(dim, dim); 

MatrixXd m1 = MatrixXd::Random(dim, dim) * 10; 

MatrixXd m2 = MatrixXd::Random(dim, dim) * 10; 

// multiply and profile 

output = m1 * m2; 

  cblas_dgemm(CblasColMajor, 

    CblasNoTrans, 

    CblasTrans, 

    MATRIX_ROWS, 

    MATRIX_COLS, 

    MATRIX_ROWS, 

    alpha, 

    A, 

    MATRIX_ROWS, 

    B, 

    MATRIX_COLS, 

    beta, 

    C, 

    MATRIX_COLS); 

for (int i = 0; i < rows; i++) { 

    for (int j = 0; j < cols; j++) { 

      a[i * cols + j] = b[j * cols + i]; 

  } 

} 

#include <iostream> 

#include <Eigen/Dense> 

 

MatrixXd output(dim, dim); 

MatrixXd m1 = MatrixXd::Random(dim, dim) * 10; 

output = m1.transpose(); 



Fig. 7. Runtime calculation for transpsositon using Eigen’s transpose 

method 

 

B. Top-Down Analysis 

Top-Down analysis is done using the toplev.py 

[2]analysis program from pmu-tools[3]. It is invoked on the 
benchmarks and executed via the scheduling program 
HTcondor. The processor on which the programs are run is a 
3.6-full on Intel(R) Xeon(R) Platinum 8275CL CPU @ 
3.00GHz processor.  

Each program is drilled down up to four levels deep in the 
hierarchy .All the benchmarks were written as single-threaded 
programs therefore the following parameter is used to restrict 
outputs of toplev.py to just a single threaded:--single-
thread. The programs were also restricted to just a single 
core using taskset -c 0 so as to decrease the complexity 

of data collected by the performance monitoring units across 
all the multiple cores. 

All the implementations for multiplication and 
transposition are parametrized to take a user defined size for a 
matrix and from that compute the results for a square matrix 
of given dimension. The following is the selected sweeping 
range over which Top-Down analysis is done: 8, 32, 256, 512, 
1024, 2048 (that is, 8 refers to an 8 x 8 matrix). 

The tiled implementation takes an additional parameter, 
tile size, which (as the name suggests) defines the size of the 
tile. The following tile size values are used in the sweeping 
range when performing top down analysis for just the tiled 
implementation: 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024. Note 
that if the tile size is larger than the matrix then computation 
is skipped. When comparing the performance of the tiled 
implementation to the other implementation, the result with 
the best performing is used. 

For each benchmark the output from toplev.py is 

redirected to a csv file using the -x, -o filename.csv 

parameters; the csv file is then imported into R (a standard 
analysis package) for analysis. 

V. MATRIX MULTIPLICATION RESULTS 

A. Runtime performance 

Figure 8 shows the runtime results for all the benchmarks. 
For small matrix sizes up to about 256 by 256, the difference 
seems to be marginal as the multiplication is computed within 
milliseconds for all the implementations. The differences in 
performance become evident for matrices of size 512 by 512 
and greater. The OpenBLAS implementation has the highest 
performance as it maintains its runtime close to zero even for 
larger matrices (such as the 2048 by 2048).  

As mentioned in the methodology the tiled 
implementation involved sweeping different tile sizes and 
selecting the tile size with the lowest runtime to compare 
against the other implementations. The performance for  

Fig. 8. Runtimes for matrix multiplicaiton implementation 

 

different tile sizes can be seen in Figure 9. Tile size 16 has the 
lowest computation time and it is used in the comparison in 
Figure 8.   

Fig. 9. Runtimes for tiled matrix multiplication 

B. Top Down Analysis – Instructions Per Cycle(IPC) 

The instructions per cycle (IPC) is measured for each 
benchmark and shown below in Figure 10: 

Fig. 10. IPC for the four benchmarks. Each facet represent different levels of 
Top-Down Analysis. Top left is level 1, top right level 2, bottom left level 3, 

bottom right level 4. 

 Interesting enough the tiled implementation exhibits 
generally high throughput at all four levels. The naïve 
implementation’s throughput is observed to decrease as the 
matrix size increases. The Eigen implementation exhibits a 

start_clock = clock(); 

output = m1.transpose(); 

end_clock = clock(); 

cpu_time = ((double)(end_clock - start_clock)) 
/ CLOCKS_PER_SEC; 

 

 

 



steady throughput rate for matrices of sizes between 256 and 
2048 in the first three levels. OpenBLAS exhibits a steady 
increase in throughput in the level 1 and level 2. In levels 3 
and 4 the throughput seems to decrease up to 1024 where it 
spikes up for OpenBLAS. 

 As with the tile implementation runtimes, the tile 
implementation IPC values were also measured for tiles of 
different sizes. This is shown below in Figure 11: 

Fig. 11. IPC for tile sizes. Each Facet represents the tile size use to perform 

the multiplication. Hence the largest tile size 2048 has only one point the 
largest matrix used in this empirical study is 2048 by 2048. The different 

colored lines resemble the different Top-Down analysis levels. 

 

  

Fig. 12. Top Down Analysis of Naïve Implementation. 

 

VI. MATRIX MULTIPLICATION BOTTLENECKS 

A. Naïve implementation 

From Figure 12 Backend Bound of Top-Down 

analysis is flagged in level 1 predominantly across all the 

different matrix sizes. Furthermore, the percentage of 

execution time as a result of this bottleneck increases as 

the matrix increase.  

Issues attributed to Backend Bound include data 

cache misses or stalls due to divider overload[1]. This 

makes sense for the naïve implementation as we expect 

more cache misses for larger matrix sizes. 

A dive into the next level reveals two dominant 

bottlenecks: Core Bound and Memory Bound. As the 

matrix size increase the bottleneck shifts from Core 

Bound to Memory Bound. This is also expected for naïve 

given that Memory Bound can be a result of a load 

missing all caches. 

At the third level it is revealed that the for larger 

matrices the major bottleneck is L3 bound. It also makes 

sense for larger matrices because naïve does not take 

advantage of spatial locality therefore when misses occur 

data has to be fetched from the lowest cache (that is 

closest to the memory.) This is furthermore corroborated 

at the fourth level where the major bottleneck for large 

matrices is L3 Hit latency. 

 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 



 

Fig. 13. Top Down Analysis of Tiled Implementation. The facets represent 

tiles of different sizes 

 

B. Tiled implemenation 

 

Similarly, for the tiled implementation at level 1, the 
dominant bottleneck is Backend Bound.  Three out of the 10 
samples (all three of matrix size 256) exhibit Retiring 
bottlenecks (Figure 13 (a)) . Further examination in level 2 
(Figure 13 (b)) shows that for tile sizes between 2 and 28 the 
bottleneck is Core Bound. Matrices computed with tiles of 
size 512, 1025 and 2048 exhibit Memory Bound as the major 
bottleneck. This makes sense because for large tile sizes, the 
multiplication procedure begins to resemble that of naïve. 

At the third level (Figure 13 (c)) it is revealed that the 
programs that are bottlenecked by Core Bound slots is as a 
result of sub optimal port utilization[1]. This is corroborated 
at the 4th level (Figure 13 (d)) where large matrix sizes are 
limited by sub-optimal port utilization.  

 

 

 

 

 

 

C. Eigen Library  Implementaion 

Eigen Exhibits bottleneck trends similar to that of tiled. 
The first level is dominated by Backend Bound (Figure 14 (a)) 
across the different matrix sizes. In the second level (b) it is 
revealed that the bottleneck is Core Bound. The bottleneck for 
larger sized matrices seems to be due to sub optimal port 
utilization as revealed in level 3 and level 4 (Figure 14 (c) and 
(d)).  

D. OpenBLAS Library Implementaion 

OpenBLAS differs from the rest of the implementation as 
it is the only one to exhibit Retiring as a bottleneck for larger 
matrix sizes such as 2048 (Figure 15 (a)). Investigation of the 
4th level shows that bottleneck lies in Vector Floating Point 
(FP) Arithmetic (Figure 15 (d)). This is an indication that 
improvement can be made to the code by vectorizing in order 
to improve performance. Since a high retiring rate corresponds 
to a high IPC [1]we would expect a significant increase in the 
IPC if the code’s vectorization is improved. 

For the smaller sized matrices, the bottleneck (Figure 15 
(a), (b) and (c)) is similar to the previous three 
implementations: it is Core Bound  
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Fig. 14. Top-Down Analysis of Matrix Multiplication using Eigen 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 15. Top Down Analysis of Matrix multiplication using OpenBLAS 



 

VII. MATRIX TRANSPOSTION RESULTS 

A. Runtime performance 

Figure 16 shows the runtimes for the naïve implementation 
and the eigen implementation of transpose: 

 

Fig. 16. Runtimes for the naïve implementaiton of transpose and the eigen 

library transpose function. 

Surprisingly, for large size matrices the naïve implementation 
seems to perform significantly faster than the eigen inbuilt 
transpose function. The bottlenecks for both implementations 
are examined in the bottleneck section VIII. 

B. Top-Down Analysis – Instruction Per Cycle(IPC) 

 

Fig. 17. IPC for the naïve and eigen transpose implementations are collected 

from Top-Down Analysis. Each facet represent different levels of Top-Down 

Analysis. Top left is level 1, top right level 2, bottom left level 3, bottom 

right level 4. 

At the first level the naïve implementation seems to have a 
higher throughput than the eigen method. At the other levels 
the IPC keeps interchanging between the two 
implementations. 

 

 

 

VIII. MATRIX TRANSPOSTION BOTTLENECKS 

A. Naïve implementation 

 

From Figure18 (a) it can be observed that the 

dominant bottleneck across the matrix sizes is Backend 

Bound. The percentage of execution time taken by 

Backend Bound increases as the matrix size increase from 

256 to 2048. In levels 2 3 (Figure 18 (c) and (d)) and the 

pmu does not specify the port therefore we cannot narrow 

down on the ports involved in the sub optimal port 

utilization. However, at level 4 (Figure 18 (d)), for the 

largest matrix (2048) the pmu specifics port 1 as the 

bottleneck. 
 

B. Eigen Library  implementation 

 

From Figure 19 (a) it can be observed that the major 

bottleneck for larger sized matrices is Frontend Bound. At 

the level 2 and 3 (Figure 19 (b) and (c)) the major 

bottleneck is revealed to be Frontend Latency for larger 

sized matrices.  

The Frontend Latency is a metric accounting for 

cases that lead to fetch starvation such as instruction 

cache misses and Instruction Length Decoding [1]. This 

is likely to be the reason for the significantly low 

performance of Eigen library’s transpose method in 

comparison to the naïve implementation. 
 

IX. CONCLUSION 

  Top-Down analysis is performed on 6 different 
programs: Naïve matrix multiplication, Tiled matrix 
multiplication, Eigen library matrix multiplication, 
OpenBLAS library matrix multiplication, naïve matrix 
transposition and Eigen library matrix transposition.  

 The first four programs realize the same functionality- 
matrix multiplication but the OpenBLAS exhibits the fastest 
performance while the naïve exhibits the least performance. 
OpenBlAS’s bottleneck lies in the Retiring area(Vector 
Floating Point Arithmetic) suggesting that vectorizing it’s 
code could further improve it performance. Majority of the 
other implications are Backend Bound (Core Bound and 
Memory Bound) which is consistent with the challenge of 
matrix multiplication – sub optimal port utilization and data 
cache misses. 

 The last two programs perform matrix transposition. The 
results show that the naïve implementation performs better 
than the Eigen Library implementation of transpose. We 
suggest that this low performance is attributed to Frontend 
Latency due to instruction cache misses as per the Top-Down 
Analysis results 
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Fig. 18. Top-Down Analysis of naïve transpose 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 19. Top Down Analysis of transpose using the Eigen library 
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APPENDIX I: TILED MATRIX MULTIPLICATION 

 

 

for (int it = 0; it < tile_rows; it++) { 

  for (int jt = 0; jt < tile_rows; jt++) { 

    int a_ti = (tile_size * it * in_cols) + (jt * tile_size); 

    for (int kt = 0; kt < tile_rows; kt++) { 

      int b_ti = (tile_size * it * in_cols) + (kt * tile_size); 

      int c_ti = (tile_size * kt * in_cols) + (jt * tile_size); 

 

      for (int im = 0; im < tile_size; im++) { 

        for (int jm = 0; jm < tile_size; jm++) { 

 

          int a_mi = (im * in_cols) + jm + a_ti; 

          for (int km = 0; km < tile_size; km++) { 

            int b_mi = (im * in_cols) + km + b_ti; 

            int c_mi = (km * in_cols) + jm + c_ti; 

 

            a[a_mi] = a[a_mi] + (b[b_mi] * c[c_mi]); 

          } 

        } 

      } 

 

    } 

  } 

} 
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