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Abstract: An LED music visualizer, using a single 9V battery, that displays the real-time 
amplitudes of the bass, midrange, and treble frequencies of any song plugged into the board. 
Includes bass-boosting control, an input 3.5mm audio jack, output speakers, an output 3.5mm 

audio jack, volume control, haptic board vibration, and a bass counter Numitron display. 
 
 

 

 



1. Introduction 
I. Overview 
 
Personalized music is an auditory medium that only rarely employs visual or tactile elements. 
With our bass-boosted LED music visualizer, however, our project brings music to life by 
combining real-time audio, visuals, and haptic feedback. After all, there’s a reason big concerts 
employ large, flashy light shows and bass drops you can feel in your bones—to get a 
multidimensional user experience out of an art form that doesn’t have to be limited to the ears. 
We’re trying to deliver that experience to the personalized, portable level. 
 
II. Functionality 
 
The visualizer needs 1) a song plugged into the board (through an aux cable) and 2) a 9V power 
source (e.g. a 9V battery).  
 
There are six features of our project: 1) speakers, 2) three 8-LED arrays that light up in 
coordination with the song’s bass, midrange, and treble, 3) a user-controlled bass-boosting knob, 
4) a user-controlled total volume knob, 5) a motor that vibrates the board with every bass hit, and 
finally, 6) a BangerRanker™ Numitron display that counts and displays the number of bass 
hits—the higher the number, the more of a “banger” (party song) your song is. 
 
III. Core Components 
 
The design for the project can be split into six different functional sections: 
 

1. Pseudo-ground (VREF) generator for single-supply design 
2. Signal processing and visualization of the bass level 
3. Signal processing and visualization of the midrange level 
4. Signal processing and visualization of the treble level 
5. Bass hit counter, Numitron display, and haptic motor vibration 
6. Combining the bass and original audio signals to produce bass-boosted audio output  
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2. The Design 

I. Overview 
The Design section will be organized as follows: first, we will present the block diagrams for 
each of the aforementioned six core functional components, showing the relevant subsections 
and their relationships to each other. Then we will dedicate a chapter to understanding how we 
translate from audio through an aux cable to an initial analog voltage signal suitable for 
manipulation in our circuit. Finally, we will go through each of the six core functional 
components in detail, following the given structure of its corresponding block diagram. 
 

II. Block Diagrams 
Below are the block diagrams for each core functional section. 
 
 

 

Figure 2.1: Pseudo-ground generator 

 

Figure 2.2: Signal processing and visualization of the bass level 
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Figure 2.3: Signal processing and visualization of the midrange level 

 

Figure 2.4: Signal processing and visualization of the treble level (same as midrange) 
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Figure 2.5: Bass hit counter, Numitron display, and haptic motor vibration 

 

Figure 2.6: Combining the variable gain bass and original audio signals to produce 
bass-boosted output audio 

 

III. Understanding the Music Input 
 
We planned to have our music visualizer take in music playing from a phone, a laptop, or any 
other device through an auxiliary cable. For this reason, before designing the visualizer, we first 
had to understand the typical frequency range of music, the typical voltage output range coming 
from the headphone jack of phones and laptops, and how the channels (left and right) of audio 
coming from the input audio jack work. 

A. Typical Frequency of Music 
The frequency of audible music ranges from 20Hz to 20KHz.  For this project we chose to use 1

three ranges of frequencies for our display: 
 

I. Bass : 60Hz - 250Hz 
II. Midrange: 500Hz - 2kHz 
III. Treble: 4kHz - 6kHz 

 
We chose these frequencies because they are likely to occur in songs of different genres. 

B. Typical Voltage Output of Audio Devices 
Various online forums and websites suggested that the typical output voltage of 3.5mm 
headphone jacks is between 1.5 V peak-to-peak  and 3V peak-to-peak . Because of the variation 2 3

in values provided online, we decided to measure the voltage coming out of our own phones 

1 https://www.teachmeaudio.com/mixing/techniques/audio-spectrum  
2 https://www.ifixit.com/Answers/View/97418/what%27s+the+iPhone+3.5+mm+output+jack+power+supply+output 
3 https://electronics.stackexchange.com/questions/37926/what-is-the-typical-max-voltage-out-of-a-pc-speaker-jack  
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when playing music at ½ volume, ¾ volume, and maximum volume, so as to obtain accurate 
values for our design. We measured the left channel of a music signal from a phone. Below is a 
table with of the recorded data from the measurement: 
 

Volume level Peak-to-peak voltage 

½  160 mV 

¾  480 mV 

Max volume 3.04 V 

 
Figure 3.1: Measured voltage values from a 3.5mm jack of an Iphone 6S at different volume 

levels. Song playing: WizKid - Sound It 
 
We also noticed that the voltage rarely reached or exceeded 3V peak-to-peak. This made 3V a 
good theoretical choice for us to use as a maximum peak-to-peak input voltage in our subsequent 
calculations. 
 
Having defined 3V as our maximum peak-to-peak input voltage, we designed all subsequent 
amplifiers within our circuit such that any no signal would exceed a maximum output of 9V 
peak-to-peak. This is because our circuit runs off of 9V, single-supply, and any music above 9V 
peak-to-peak would be clipped, which we want to avoid. The implementation of this design 
choice applies to all op amps used in this project. 

C. L+R Audio Channels 
Smartphones and laptops have the capability of playing audio on two separate channels—left and 
right. We had no need for distinction of music by channels, but we did want to include all audio 
and treat it as if it were mono audio. Therefore, we chose to combine the left and right channels 
using a non-inverting summing op-amp configuration. Below is a schematic of the non-inverting 
summing op-amp configuration: 
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Figure 3.2: Conversion of stereo to mono using a non-inverting summing op-amp 
configuration to combine L+R audio with a gain of 1.5 

 
The use of a summing op-amp also gave us the opportunity to amplify our audio signal at the 
same time. We wanted to amplify our audio signal to the full range for the most accurate 
measurements in later stages. We chose to amplify at this stage, rather than later, for two 
reasons:  

 i. To reduce the number of op amps used. 
ii. To prevent amplification of noise after the signal is later filtered. It is undesirable to 
amplify after filtering because that would not only amplify the passed signal but also 
amplify the noise from the filtered signal. 

 
The configuration in Figure 3.2 has a gain of 1.5 and meets the 9V peak-to-peak constraint stated 
in part B of section III above as per the calculations below:  
 

Maximum Sum of left and right = 3V + 3V = 6V 
Amplification of the maximum sum of left and right by 1.5 = 6V * 1.5 = 9V 
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Now that we understand how music is inputted into our board, we move on to examining each 
functional section in more depth. 

IV. Single-Supply Design 
Since we plan to run our circuit on a 9V battery, we choose to design our project in single 
supply. In other words, instead of having a range of -9V to +9V, for example, to work with, we 
are limited to 0V to +9V. This means that we can never have negative voltages and that most 
analog signals should be now centered around +4.5V, the new midpoint. We now call +4.5V 
“pseudo-ground” or VREF in the schematic. Below is a circuit that produces +4.5V for the 
pseudo-ground (VREF) bus: 
 
 

 

Figure 4.1: Pseudo-ground (VREF) generator 9V battery connected to SPDT switch 

 
Single supply also meant that we had to level-shift the DC levels of all of our audio signals to 
+4.5V before sending it into our op amps so as to prevent clipping. Below are the schematics of 
two level shifters—one for the left and the other for right channels of audio: (Level shifting was 
done before the stereo to mono conversion that we have illustrated in Figure 3.2 of section III 
above) 
 

7 



 

Figure 4.2: Level shifting the DC level of the right channel of our audio signal to 4.5V 
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Figure 4.3: Level shifting the DC level of the left channel of our audio signal to 4.5V 

  

V. Bass Signal Processing & Visualization 

A. 60Hz - 250Hz Bass Bandpass Filter 
We need to take in the source audio signal (already combined and amplified, as in part III C) and 
filter out everything but the bass component. To do this, we need a strong filter that declines 
steeply outside the passband. The following bandpass filter was designed using analog.com’s 
Filter Wizard.  Below is a schematic produced by analog.com for an active five-stage 60Hz - 4

250Hz bandpass filter: 
 

4 http://www.analog.com/designtools/en/filterwizard/  
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Figure 5.1: Schematic of a 60Hz - 250Hz bandpass filter from analog.com 

 
The filter passed signals between 60Hz and 250Hz and had an attenuation of about -100 db per 
decade beyond 250Hz and one of 100db per decade below 60Hz. We adapted the design above 
to suit our parts by replacing the OP281 op amps with LMC6482 op amps, as we had more 
experience with the LMC6482’s, they were readily available in lab, and they had a sufficient 
rail-to-rail input range. Below is a schematic of the bass bandpass filter that we built: 
 

10 



 

Figure 5.2: 60Hz - 250Hz bandpass filter based off of a design from analog.com’s Filter 
Wizard. 

 

B. Variable Gain Amplifier for Bass Boosting 
We wanted to be able to control the gain of our bass signal, so that the user can “boost” the bass 
whenever they wanted. Therefore, we designed a variable gain amplifier using an op amp with a 
maximum gain of 1 and a minimum gain of 0. This enabled us to control the amplitude of the 
bass signal going beyond this point. Below is a schematic of a variable gain amplifier with an 
inverting op amp configuration: 
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Figure 5.3: Variable gain amplifier with an inverting op amp configuration (range of gain: 0 to 
1) 

 

C. Single-Slope Analog-to-Digital Converter (ADC) 
To display the amplitude of the bass on an array of LEDs, we converted our analog signal into 
digital. To do this, we designed a single-slope analog-to-digital converter (ADC). The basic idea 
behind a single-slope ADC is that you compare an analog input waveform that you want to know 
the decimal level of against a linearly-sloped known reference voltage, and the time it takes for 
the input signal to cross that slope is proportional to its decimal level at that moment. You 
compare the input waveform with that slope repeatedly (resetting the sloped line at a fixed 
speed) to get a rough estimate of its digital level over time. 
 

 

 

Figure 5.4: Converting an analog waveform to digital outputs using a single-slope ADC. 
Image courtesy of sub.allaboutcircuits.com/images/04268.png 

 
 
First, we needed to create our known, repeated slope. We did this by using a resettable 
non-inverting integrator to integrate a constant voltage, generating a linear slope that rises from 
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4.5V to 9V. We chose to integrate in this range because we only intended to sample just the top 
half of our audio signal (which occurs between 4.5V and 9V), rendering only the top half of the 
slope useful to us. Only the top half of the signal is necessary to digitize because we want to 
know the max level of the bass signal anyway, which always occurs in the top half, never in the 
bottom half. In addition, we chose the non-inverting configuration, rather than the inverting 
configuration we’ve seen in lab, because we needed a positive slope.  
 
We intended to acquire at least 3 samples per wave for any frequency of bass, as this would 
provide us with sufficient resolution to ensure we weren’t missing any waves. Since the highest 
theoretical passed frequency of our bass signal is 250 Hz as per the specification of our bass 
passband filter (Section V part A), our sampling frequency was thus chosen to be 3*250Hz = 
750Hz. From our chosen sampling frequency, we were able to determine the RC integration time 
for our integrator: 

1/750hz = 0.00133 sec = 1.33 milliseconds = R*C 
 
This means that it will take our integrator 1.33 milliseconds to rise from 4.5V to 9V in a linear 
fashion .Below is a schematic of the non-inverting resettable integrator: 
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Figure 5.5: non-inverting resettable integrator that integrates from 4.5V to 9V in 1.33mSec 

 
The slope from the integrator was then compared to the output of the variable gain amplifier that 
we have talked about in section V part B above using a LM311 comparator. We chose the 
LM311 over the LMC6482 because we need to set the output at 0V (low) and +5V (high) for the 
subsequent digital circuit whilst still taking in a signal between 0 and 9V, which the LM311 can 
do, but the LMC6482 cannot. 
 
Using the ADC in the above manner also means we needed to reset the non-inverting integrator 
every 1.33mSec. To do this, we built a 6kHz clock using an LMC555 timer and used a 4 bit 
counter to divide that frequency by 8 so as to achieve a 750Hz clock, which we then hooked up 
to a digital switch that resets the necessary capacitors at the desired rate. The capacitors, when 
shorted, reset essentially instantaneously, so the ramp would be reset back to 4.5V and the 
integration would repeat. Note: We decided to build a 6kHz clock and not just a 750Hz clock 
right off the bat because we’ll need the 6kHz clock later anyway. (In particular, the 6kHz clock 
shifts in data to light the 8 LEDs through a shift register, as we’ll discuss later.) Below is a 
schematic of the LMC555 timer and the divide-by-8 counter: 
 
 

 

Figure 5.6: LMC555 timer that produces a 6kHz clock and a divide-by-8 counter that produces 
a 750Hz clock 
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The 750Hz clock was then connected to a digital switch (74HC4316) that allowed us to short the 
two capacitors in the integrator at the same time. Below is a schematic of the non-inverting 
integrator with the 74HC4316 digital switch: 
 

 

Figure 5.7: non-inverting integrator connected to a 74HC4316 digital switch 

 
At first, we designed the ADC to produce a 3-bit encoded output using a 4-bit counter. The 
output runs from 0002 to 1112 in binary (i.e. 0 to 7 in decimal). But this posed the problem of 
decoding the output, i.e. putting it in a displayable form, because for a given number, we want 
that particular LED to light up and light up all the LEDs below it. For example, if the output is 
zero (the lowest), we want just the first LED lit up, but if the output is 7 (the highest), we want 
all eight LEDs lit up. (This will create the audio visualizer “wave”, which is more visually 
pleasing than a single dot moving around.) 
 
Still trying to implement a 4-bit counter this way, we first tried using a logic table, but that 
quickly got too complicated (an inordinate amount of NAND gates would have to be used). 
Then, we tried using a 3-bit-to-8-line converter available in lab, which would easily turn our 
3-bit binary outputs into the corresponding decimal position (i.e. 0002 to 10000000 and 1112 to 
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00000001), but again, there was no clear way to light up more than a single LED in the way that 
we wanted, even with the converted 8-line parallel output. 
 

D. Shift Register 
Fortunately, after discussing with our ES52 instructor, we adopted a simpler design without any 
binary counting that allowed us to achieve our desire of lighting up more than a single LED at a 
time. Our selected design involved the use of a shift register in place of a 4-bit counter (i.e. no 
more counter and no more 3-to-8 converter). We fed the 6kHz clock into the clock pin of the 
74HC595 shift register and fed the output of the comparator into the data pin. This allowed us to 
display shifted data on multiple LEDs if the input data of the shift register had been HIGH for 
more than one rising edge of the 6kHz clock.  
 
In this design, we shifted in HIGH when the comparator output was +5V, then latched the output 
of the shift register when the output of the comparator changed to LOW, i.e. when the input 
waveform crossed the integrated slope. For example, if the output of the comparator was HIGH 
for 6 clock cycles, then instead of having a counter count up to 6 or 1102 in binary as originally 
intended, we simply shifted in 6 HIGHs through the shift register, turning on only the first 6 
LEDs. As soon as the output of the comparator went LOW, we latched that value so that the 
LEDs would stay in the first six slots, otherwise zeros would be shifted in and the 6 LEDs would 
be pushed to the other side of the array. 
 
Then, everything, including both the integrator and shift register, is reset at a 750Hz rate. The 
cycle then begins anew after the next time that the input waveform goes higher than the 
integrated slope, as new HIGHs are shifted in for another set amount of time. We used the 750Hz 
clock to thus reset the shift register at the same time that we reset the integrator (as above). 
Below is a schematic of the combination of the non-inverting integrator, the 74HC4316 digital 
reset switch, the LM311 comparator and the 74HC595 shift register that make up the 
single-slope ADC: 
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Figure 5.8: single slope ADC (74HC4316 digital reset switch, LM311 comparator and the 
74HC595 shift register) 

 

E. Display Bass Amplitude on an 8-LED Array 
 
The output pins of the shift register were then connected to 8 big red LEDs with forward 
voltages of about 2V. We then chose to drive 10mA through them because 10mA provided 
sufficient brightness for our purposes. This current was set by a current limiting resistor of 300Ω. 
Figure 5.8 above shows the resistors and the LEDs connected to the output of the 74HC595 shift 
register. 

VI. Midrange Signal Processing & Visualization 

A. 500Hz - 2kHz Midrange Bandpass Filter 
Just as in the bass section, we now go back to the start and take the L+R combined and amplified 
source audio signal (from Section III C) and take it down another path. This time, we filter out 
everything but the midrange frequencies with the aim of eventually displaying their levels. To do 
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this, we designed the midrange bandpass filter using one low pass filter that passes frequencies 
lower than 2KHz and one high pass filter that passes frequencies higher than 500Hz. Below is 
the schematic for the bandpass filter: 
 
 
 

 

Figure 6.2: Schematic of the 500Hz - 2kHz midrange bandpass filter  

 

B. AC Coupling 
Similar to how we handled the passed bass signal, we now want to convert our analog midrange 
signal to a digital signal to display on another 8-LED array. Whereas we did this previously in 
hardware using a single-slope ADC, we now handle the midrange signal in software, e.g. by 
connecting the output of our midrange signal to an analog input pin of an Ardunio µController. 
From there, we can use the µController to do whatever we want—in this case, mapping the 
analog level to a series of digital outputs. 
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However, there’s one thing we need to do first. An analog input pin of an Arduino µController 
only reads voltages between 0 and +5V, yet the voltage of our analog signal ranges between 0V 
and +9V. For this reason, in order to fit our signal into this range without using a +2.5V 
secondary pseudo-ground (which would get unnecessarily complicated), we used an AC 
coupling circuit so as to remove the DC levels of the audio signal. This centered the midrange 
signal back around 0V, cutting off signals below 0V. This is fine, because as always, we only 
care about the top half of the signal, as that is where the maximum will always lie. Then, the new 
“grounded” signal will range from 0 to +4.5V (imagine the top half of the original signal—4.5V 
to 9V—sitting on ground), which is usable by the µController. 
 
Furthermore, because an AC coupling circuit acts like a high pass filter, we chose a critical 
frequency fc of 50Hz because it is ten times less than the lowest frequency of our passed 
midrange, 500Hz, as specified in the midrange filter (section IV part A) above. We chose this 
value to be away from our critical frequency because the point of this circuit is to strip DC, not 
attenuate the signal. Below is the schematic of the AC coupling circuit: 
 

 

Figure 6.3: AC coupling circuit for the midrange with fc of 50Hz 
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C. Leaky Peak Detector 
We then decided to average the values of peaks of the midrange signal using a leaky peak 
detector. To choose the RC values for the leaky peak detector we considered the period of the 
lowest frequency of the midrange, 500Hz. 
 

Period = 1/500Hz = 2 milliseconds 
 
From the above value, we understood that our RC time constant needed to be much greater than 
2 milliseconds yet less than the time it takes for the amplitude to decrease to a lower peak value. 
Based on this constraint, we arbitrarily chose 100 milliseconds. Finally, we used an SD103 diode 
due to its low forward voltage, minimizing voltage loss. Below is the schematic of the leaky peak 
detector for the midrange: 
 

 

Figure 6.4: Leaky peak detector circuit for midrange with RC time constant of 100mSec 

 
The output of the leaky peak detector is then connected to an analog input pin (pin A5, as 
denoted in our code) of an Arduino µController. 

20 



 

D. Arduino µController & Shift Register 
We are now ready to display the analog level of the midrange on an array of 8 LEDs by using the 
Arduino µController. We already know that we will be using one input pin (A5). To minimize 
the number of Arduino output pins that we use, we chose to use a shift register and just one 
digital output pin. We chose the TLC5916 shift register because it is a constant current driver 
whose output current can be defined by a resistor connected to its R-EXT pin.  
 
We determined the desired current level by connecting one of the yellow LEDs to the power 
supply and incrementally adjusting the amount of current provided across the LED, which 
demonstrated that a current of about 10mA provided sufficient brightness for our purposes. 
Therefore, our choice of resistor value for R-EXT could be calculated from this Iout value and 
from the formula provided by the datasheet of the TLC5916: 
 

R-EXT = (1.25/IOUT) * 15 
R-EXT = (1.25/[10E-3 A]) * 15 
R-EXT = 1875Ω 
Value chosen for R-EXT= 1.8㏀ 
 
Note: a slightly smaller R-EXT value than theoretically desired means a slightly higher 
current than desired, which is fine; 10mA is not an absolute maximum value. 

 
The TLC5916 also has a serial data out (SDO) pin, which is convenient to our design, because 
we still need another shift register for the treble display, as we will discuss below in section VII. 
Below is the schematic of the Arduino µController connected to two TLC5916 shift registers: 
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Figure 6.5: Arduino µController connected to two TLC5916 shift registers for the midrange 
and treble 

 

E. Display Midrange Amplitude on an 8-LED Array 
To minimize redundancy, we will postpone discussion of the specific code within the Arduino 
and the discussion of the midrange 8-LED array until the next section. This is because much of 
the code involved in the display for the midrange was abstracted and combined with that of the 
treble level. In addition, the midrange and treble displays are closely linked and require a 
discussion of code and therefore will be described all together in the next section. 
 

VII. Treble Signal Processing & Visualization 
Please note that many of the early subsections of the Treble section are similar to their 
counterparts in the Midrange section. 
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A. 4kHz - 6kHz Treble Bandpass Filter 
We designed the treble filter with the help of analog.com’s Filter Wizard.  The filter is designed 5

to take in the original combined L+R signal from way back in section III C and pass frequencies 
between 4kHz and 6kHz. It should attenuate frequencies higher than 6kHz by about ~dB and 
attenuate frequencies lower than 4KHz by about ~dB. Below is the schematic generated by 
analog.com: 
 

 

Figure 7.1: Schematic of a 4kHz - 6kHz treble bandpass filter generated by analog.com’s Filter 
Wizard. 

 
Just as before, we adapted the design from analog.com to suit our parts by replacing all the op 
amps with LMC6482 op amps and connecting the REF terminals to our pseudo-ground (VREF). 
 

5 http://www.analog.com/designtools/en/filterwizard/  
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Figure 7.2: Schematic of a 4kHz - 6kHz treble bandpass filter based off of a design from 
analog.com’s filter wizard. 

 

B. AC Coupling 
Just like with the midrange, we need to AC couple of the output of the treble filter. Please refer 
back to the AC Coupling section of the Midrange section (Section V B) for a more detailed 
description of why we need AC coupling.  
 
In this case, we choose our fc to be 10 times less than the frequency of the lowest treble 
frequency (4kHz). Thus our fc becomes 400Hz to ensure that none of the frequencies between 
4kHz and 6kHz are attenuated. Below is the schematic of the AC coupling for the treble: 
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Figure 7.3: AC coupling for the treble (4kHz - 6kHz) with fc of 400Hz 

 

C. Leaky Peak Detector 
Just like with the midrange, we now use a leaky peak detector to average the peak values before 
connecting the circuit to an input pin of the Arduino µController. We used the same RC time 
constant of 100 milliseconds because the period of the lowest passed treble frequency (4kHz) is 
0.025 milliseconds and much less than the 100 millisecond time constant. Below is the schematic 
for the treble leaky peak detector: 
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Figure 7.4: Treble leaky peak detector 

 

D. Arduino µController & Shift Register 
To minimize the number output pins needed to drive 8 LEDs, the treble display was also 
implemented using the TLC5916 shift registers. This second shift register was connected to the 
serial data out (SDO) of the midrange shift register and it shared the same clock pin and latch pin 
as the first shift register; thus, no additional Arduino output pins were required outside of those 
attached to the first shift register.  
 
The only difference between the midrange circuit and the treble circuit was the color of the 
LEDs. Treble used green LEDs while midrange used yellow LEDs. Nonetheless, both TLC5916 
used the same 1.8㏀ resistors to drive a constant current of about 10mA. 
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Figure 7.5: Arduino µController connected to TLC5916 shift registers for both treble and 
midrange. Note: this is the same as figure 6.5 

 

E. Display Midrange & Treble Amplitude on an 8-LED Array using Arduino Code 
We now dissect, piece by piece, the code in the Arduino that will drive both shift registers and 
light up both LED arrays.  
 
Note: Before implementing our actual LED-lighting function, we created several smaller global 
functions, with useful names, for our final function inside loop()to use. 
 

Step 1. Mapping the analog inputs from the input pins into digital levels. 
 
Converting analog to digital in Ardunio code is nice because the Arduino software basically does 
it all for us. This process requires two functions: analogRead() and map(). Thus, we read both 
our analog midrange signal, which was connected to pin A5, and our analog treble signal, which 
was connected to pin A4, and pass those into map() separately, which will return a digital value 
we can use. 
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First up is using the analogRead() function, which will “read” our midrange and treble signals 
and return a value between 0 and 1023 corresponding linearly with analog values between 0V 
and +5V, as per the online Ardunio Reference page . Then, we map that number to a range of 1 6

to 8, corresponding to how many LEDs we want lit up. For example, 0V would be read as 0, 
which would be mapped to 1, and only the bottom-most LED would be lit up. Conversely, +5V 
would be read as 1023, which would be mapped to 8, and all of the LEDs would be lit up. 
 
However, there’s one small quick fix to make before moving on: the output signal of the AC 
coupling for both midrange and treble only ranges from 0 to +4.5V instead of the expected 0 to 
+5V. To ensure that we’re including the highest LED, we tweak our mapping values. [0 - 5] → 
[0 - 1023] → [1 - 8] now becomes [0 - 4.5] → [0 - ?] → [1 - 8], where we solve for the question 
mark by proportionally reducing the highest input mapping value: 
 

5/1023 = 4.5/? 
? = (4.5/5) * 1023 ≈ 920 

 
Now an input voltage of +4.5V, corresponding to 920, maps out to 8 and lights up all the LEDs, 
as desired. 
 
We made two separate small global functions to do the above: 
 
//function that maps midrange input 

int midrangeLevel(){ 
  int amplitude = analogRead(MIDRANGE_INPUT); 
  amplitude = map(amplitude, 0, 920, 1, 8); 
  return amplitude; 
} 

 

//function that maps treble input 

int trebleLevel(){ 
  int amplitude = analogRead(TREBLE_INPUT); 
  amplitude = map(amplitude, 0, 920, 1, 8); 
  return amplitude; 
 

 
 
We now create another small function called risingEdge() that just takes in a clock pin 
number and simply creates a rising edge on that clock pin. We will later use this to seamlessly 
shift in data into the shift registers by calling risingEdge() rather than coding two 
digitalWrite() lines every single time. 
 
//Rising edge for for any clock pin 

6 https://www.arduino.cc/reference/en/language/functions/analog-io/analogread/  
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void risingEdge(int clockPin){ 
    digitalWrite(clockPin, LOW);     // falling edge 
    digitalWrite(clockPin, HIGH);    // rising edge 
} 

 

 
 

Step 2. Writing a function to shift out the proper data to the corresponding 8-LED arrays. 
 
We then leveraged risingEdge() to create a function called turnLEDOn() that takes two 
integer parameters—the midrange 1-8 level and the treble 1-8 level—and then lights up both 
arrays of LEDs through the shift registers at once. 
 
For example, if LEDNumMidrange is 5 and LEDNumTreble is 2, we pass those numbers into 
turnLEDOn(), which shifts 5 HIGH (on LEDs) and then 3 LOW (off LEDs) into the midrange 
array, and then shifts 2 HIGH (on LEDs) and then 6 LOW (off LEDs) into the treble array, all in 
one fell swoop: 
 
//function that lights up 8 midrange LEDs and 8 treble LEDs 

void turnLEDOn(int LEDNumMidrange, int LEDNumTreble){ 
 

 

      //shift in value of midrange 

      digitalWrite(DATA_PIN, HIGH);    //data high 
      for(int i = 0; i<LEDNumMidrange; i++){ 
        risingEdge(CLK_PIN); 

      } 

  

      //shift in zeros for unreached level of midrange 

      digitalWrite(DATA_PIN, LOW);    //data low 
      for(int i = 0; i<(8-LEDNumMidrange); i++){ 
        risingEdge(CLK_PIN); 

      } 

  

      //shift in value of treble 

      digitalWrite(DATA_PIN, HIGH);     //data high 
      for(int i = 0; i<LEDNumTreble; i++){ 
        risingEdge(CLK_PIN); 

      }  

 

      //shift in zeros for unreached level of treble 

      digitalWrite(DATA_PIN, LOW);    //data low 
      for(int i = 0; i<(8-LEDNumTreble); i++){ 
        risingEdge(CLK_PIN); 

      } 

} 
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We then called turnLEDOn() inside loop() and passed in the corresponding amplitude levels 
of midrange and treble from the midrangeLevel()function and the trebleLevel()function, 
which constantly monitor the A4 and A5 analog input pins: 
 
//display midrange and treble level on array of LEDs 

   turnLEDOn(midrangeLevel(), trebleLevel()); 

 

 
The midrange and treble arrays of 8 LEDs each then successfully simulated the variation in 
amplitude of the midrange and treble frequencies of our music signal by “waving” up and down 
in real-time along with our music. 
 

iii. Challenge faced: rapid flickering of LEDs due to data being shifted in rapidly 
 
We noticed our unlit LEDs would flicker rapidly. We figured this was due to data being shifted 
into the shift registers at a rapid rate. Therefore, we incorporated a latch inside loop() to slow 
down the rate of flickering. In the code below LEDDisplayTime is declared as const 
unsigned long HapticFeedbackTime = 200; 
 
//decrease amount of flickering by latching value for LEDDisplayTime 

milliseconds 

  if(digitalRead(LATCH_PIN) == HIGH){  //if not latched 
    LatchStart = millis();              //set time when latched 
  } 

  

  digitalWrite(LATCH_PIN, LOW); //activate latch(active low) 
 

//only deactivate latch when LEDDisplayTime has elapsed 

  if(millis() > LatchStart + LEDDisplayTime){  

    digitalWrite(LATCH_PIN, HIGH); //deactivate latch 
  } 

 

 
We implemented the above code in this manner instead of using delay() so as to to keep other 
processes from being halted. 
 

VIII. Bass Hit Counter, Numitron Display, & Haptic Feedback 
The next part of our circuit is entirely based (pun intended) off the bass signal. Using the bass 
signal alone, we will drive a counter that counts how many times the bass goes beyond a certain 
threshold, display that number on a Numitron, and drive a motor everytime the bass goes above 
that threshold. 
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A. Comparator with Adjustable Hysteresis 
To detect the bass beats, we built a comparator to compare the amplitude of the bass against a 
constant threshold voltage with adjustable hysteresis. We used hysteresis so as to minimize the 
amount of signal bouncing that would occur as the input bass waveform approached the 
threshold voltage due to noise. We used a potentiometer to provide us with a range of 
adjustability to experimentally find a “sweet spot” of hysteresis that provided us with a 
reasonable amount of detection. 
 

 

Figure 8.1: Schematic for bass hit detector with variable hysteresis 

 

B. Ardunio µController, Shift Registers, & Seven-Segment Numitron Displays 
Now that we have a digital signal (either 0V or +5V from the comparator) based on whenever 
the bass crosses a predefined threshold, we can now use the Arduino µController to 1) count the 
bass and 2) drive the Numitron. Before explaining how the bass counter was implemented in 
code, we first establish how the display circuit has been designed. 
 
The display circuit involved two 4-bit counters. Each clock pin of the two counters was 
connected to a separate Arduino digital output pin. The reset pins of the two counters were then 
shorted and connected to a single Arduino digital output pin; this allowed the counts of the two 
counters to be controlled individually and reset at the same time. We wanted to be able to reset 
immediately; therefore, we used the 74HC161 counters, which have an asynchronous clear. 
These two counters were then connected to two separate 3-bit-to-7 segment decoders (LS247). 
These decoders were then connected to two separate Numitron displays. Below is a schematic of 
the display circuit: 
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Figure 8.2: Schematic for the bass beat counter display 

 
Now we examine the code used in the Arduino to count the bass beats:  
 

Step 1. Counting beats using an Interrupt Service Routine 
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We implement our counter for the bass hits using an Interrupt Service Routine (ISR) because it is 
faster than digitalWrite(). We start by naming our boolean ISR flag BeatDetected, which 
is initially set to be false, and change its value from false to true whenever a rising edge is 
detected from the bass input pin (which we have called the BASS_PIN). We then initialize a new 
variable called BeatCntr to zero in setup() and constantly monitor the flag, BeatDetected, 
in loop(). Whenever the flag is set to true, i.e. a beat is detected, the beat counter BeatCntr 
increments by one in the loop. The flag is then reset to false and loop() goes back to 
constantly monitoring the BeatDetected flag. Below is the code showing how we attach the 
ISR and how we reset the beat counter in setup(): 
 
//attach interrupt to Bass input pin 

attachInterrupt(digitalPinToInterrupt(BASS_PIN), setISRFlag, RISING); 
 

BeatCntr = 0; //initiate variable to hold number of counts 
 

 
Function that sets ISR flag: 
 
//ISR function 
void setISRFlag(){ 
  BeatDetected = true; 
} 

 
Function that is inside loop() to increment BeatCntr and to clear the ISR flag: 
 
//increment beat counter if beat is detected 

  if(BeatDetected){ 
    BeatCntr = BeatCntr + 1;           //increment beat counter 
  

    //clear ISR flag 

    BeatDetected = false; 
  } 

 

 
Step 2. Displaying the beats on the Numitron display 

 
After we’ve established our BeatCntr variable that tells us the number of bass hits since the 
start of the song, we now need to put that number onto the Numitron displays. As above, to 
simplify our final function, we first code several smaller global functions.  
 
We will be sending rising edges to the counters, which then increase the values that we see 
displayed on the Numitron displays. Therefore, the same function risingEdge()that we used in 
the shift registers is applicable here: 
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//Rising edge for any clock pin 

void risingEdge(int clockPin){ 
    digitalWrite(clockPin, LOW);     // falling edge 
    digitalWrite(clockPin, HIGH);    // rising edge 
} 

 

 
To reset the displays, we implemented a function that asserts the clear pins of the two counters: 
 
//function to reset the numitron displays 

void resetNumitronDisplay(void){ 
  risingEdge(NUMITRON_RESET_PIN); 

} 

 
Our two Numitron displays will show the tens digit (on the left) and the ones digit (on the right). 
Therefore, we implement two separate functions that take in an integer and returns the ones place 
and the tens place, respectively. For example, given an integer of “38”, the onesDigitFunc() 
will return “8” and the tensDigitFunc() will return “3”: 
 
//function that returns the the ones digits of a number 

int onesDigitFunc(int x){ 
  return (x%10); 
} 

 

//function that returns the tens digit of a number 

int tensDigitFunc(int y){ 
  int subtractOnesValue = (y - onesDigitFunc(y)); 
  int truncated = (subtractOnesValue)/10; 
  return onesDigitFunc(truncated); 
} 

 

 
We then write a function that takes in two integers, which we call “onesDigit” and 
“tensDigit” for usability, and displays those digits on the corresponding Numitron displays. It 
does this by causing a particular number of rising edges on the corresponding clock pins: 
 
//function that causes multiple clocks cycles to display a number on the 

numitron displays 

void displayDigit(int onesDigit, int tensDigit){ 
  //clear display 

  resetNumitronDisplay(); 

  

  //display ones digit 

  for(int i=0; i<onesDigit; i++){ 
    risingEdge(ONES_CLK_PIN); 
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  } 

  //display tens digit 

  for(int i=0; i<tensDigit; i++){ 
    risingEdge(TENS_CLK_PIN); 

  } 

 

 
With these functions, we have all the tools we need to display the counted beat hits. We do so 
with just one functional call to displayDigit(), which we pass the ones and tens digit of 
BeatCntr into as parameters: 
 
//display beat counts on the numitron display 

  displayDigit(onesDigitFunc(BeatCntr), tensDigitFunc(BeatCntr)); 

 

C. Motor Haptic Feedback 
Along with counting every bass hit, we want to drive a motor that will vibrate the board every 
time the bass level exceeds a certain threshold. This is the tactile element of our project 
combining audio, visuals, and tactile elements. We do this by taking in the same signal that the 
bass counter circuit used and using it in a much simpler way. 
 
The hardware part of the haptic feedback involves a 3V, 75mA DC motor connected between 
one analog output pin of the Arduino µController and a current-limiting resistor connected to 
ground. A flyback diode is connected across the motor and resistor to clamp negative voltages 
and protect the rest of the circuit: 
 

 

Figure 8.1: Schematic for the motor that provides haptic feedback. 

 
The software part uses the ISR flag of the beat counter to initiate the haptic feedback. This is 
done by recording the time when the ISR flag is toggled before clearing the flag: 
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//increment beat counter if beat is detected 

  if(BeatDetected){ 
    BeatCntr = BeatCntr + 1;           //increment beat counter 
  

    //store time when haptic feedback starts 

    StartHapticFeedback = millis(); 

  

    //clear ISR flag 

    BeatDetected = false; 
  } 

 

 
The motor is then activated for a set time period defined by a user defined constant 
HapticFeedbackTime. 

 

The motor stays activated until HapticFeedbackTime elapses: 
 
//keep haptic feedback active until HapticFeedbackTime elapses 

  if(StartHapticFeedback + HapticFeedbackTime > millis()){ 
     analogWrite(MOTOR_PIN, 255); //make motor vibrate at max 
  }else{ 
    analogWrite(MOTOR_PIN, 0); //turn off motor 
  } 

 

 
Haptic feedback is implemented in the manner shown above to allow for the code to run without 
stopping to wait for a delay; thus, it does not prevent other lines of code from running. 
 

IX. Bass-Boosted Audio Output 

A. Attenuation of Variable-Gain Bass & Original Audio Signal 
Because everyone loves bass, we want the user to be able to manually control the level of the 
song’s bass they hear. The bass-boosting design of our project involves combining the amplified 
variable gain bass with the original audio signal such that at their highest amplitudes, their ratio 
should be 3:1 of bass:original audio. 
 
Combining the two requires the use of a summing op amp. However, the voltage of the bass at its 
max volume is 9V peak-to-peak while the voltage of the original signal after being level shifted, 
summed, and amplified is also 9V peak-to-peak at its max value. If the two signals are summed 
as is, they will far exceed the output swing voltage of the LMC6482 at their max values and 
definitely be clipped. 
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Therefore, to keep them from exceeding our Vcc and Vee of +9V and 0V, respectively, we have to 
attenuate both of them such that when summed, they still fit within the swing voltage of the 
LMC6482 while maintaining their ratio of 3:1 for bass:original audio. 
 
Also, since we plan to drive the sum through a speaker, we need to ensure that one signal is not 
inverted with respect to the other. Adding the same signal to its inversion will cancel it out. 
 
To begin, we attenuate the the bass by ¾ using an op amp inverting configuration. In section V 
B, we built a variable gain amplifier that already inverted the bass; thus, this operation inverts it 
back. We then proceed to attenuate the original signal by ¼ using an op amp in an inverting 
configuration. This inverts the original signal with respect to the bass. To fix this inversion, we 
invert the original signal back again using a unity gain inverting op amp configuration.  
 

B. Summation of Bass & Original Audio with Volume Control 
After this, we can proceed to sum the left and the right to produce a bass boosted output signal. 
We also decide to add a variable gain control at this point so as to control the volume of the 
output. For this reason we use an inverting op amp with a potentiometer, which allows us to vary 
the gain between 0 and 1: 
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Figure 9.1: Attenuation and summation of the bass and and the original signal to arrive at a 
ratio of 3:1.  

 

C. Class B Push-Pull Amplifier to Drive Output Speaker Audio 
Finally, we want the user to be able to hear the song they plugged in with the new bass-boosted 
addition. To do this, we need to amplify the current so as to drive the speaker to a sufficient 
volume using a class B push-pull amplifier.  
 
To ensure that the voltage across the speaker is zero when there is no music—the quiescent DC 
voltage would otherwise create a constant tone even when nothing is plugged in—we initially 
planned to connect the negative input of the speaker to pseudo-ground (VREF), but after talking 
to our ES52 instructor, we got a great suggestion to connect the negative input of the speaker to 
an the output of the same audio signal, but inverted and amplified through another push-pull 
amplifier. This configuration increases the output volume of the speaker even more. Below is a 
schematic of the configuration: 
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Figure 9.2: Driving a speaker using two class B push-pull amplifiers. 
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3. Conclusion 

A. Our Results & Areas of Improvement 
We enjoyed working on this project and believe the final result was a full achievement of what 
we set out to do. Though not perfect, we implemented every feature from our project proposal to 
varying extents, and were able to get working versions of all of them together. We made a few 
mistakes along the way and we learnt the following things: 
 

1. When building a bandpass filter using analog.com, the values inserted should not 
correspond to the critical frequencies; rather, they should correspond to the pass 
frequencies. The quality of our midrange filter suffered due to this mistake—it was much 
too wide and did not attenuate quickly enough at the edges. 

 
For example, our midrange bandpass filter still couldn’t even filter out a 16kHz 
frequency, which should’ve been nearly completely gone: 

 

 

Figure A: A 16kHz sine wave signal still made it through our designed theoretical 2kHz - 
4kHz midrange filter. Yellow is the input audio signal and blue is the output from our 
midrange filter. 

 
 

2. Single-slope ADCs do not have the same accuracy as double-slope ADCs, which we did 
not explore in this project. Our single-slope ADC, which we used for our bass signal, 
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rarely ever reached the top two LEDs. Still, however, our single-slope ADC converted 
analog signals into digital levels of 1 through 6 quite nicely: 

 

 

Figure B: Our single-slope ADC. Yellow is the 6kHz clock, blue is the integrator output, 
purple is the input bass waveform, and green is the comparator output. It is visible that the 
comparator output stays high for between 1 and 6 cycles, depending on how long the bass 
waveform stays higher than the integrated slope. That length of time is then fed into the shift 
register and goes into how many LEDs are lit, as per the report. 

 
 

3. Separating the entire digital and analog parts of the project, and only having them 
connect at one point, will reduce the amount of noise leaking into one another. Our 
output audio constantly had a background signal of around ~750Hz that we believe to be 
a product of our 750Hz clock leaking into the analog audio output. 

 

B. Things We’d Do Given More Time 
1. We’d firstly like to isolate the source of the 750Hz leaking signal and then get rid of it. 

We would do this by either implementing a sharp filter that filtered out 750Hz (though 
this would affect the music too) or redesigning our entire project such that digital and 
analog only touch at one point. 

2. We would like to explore using a double-slope ADC in place of our single-slope ADC to 
get a better digital version of our bass signal. In addition, instead of sampling the upper 
half of the bass signal as we did in the report, we could have AC coupled circuit to shift 
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the DC levels of the audio signal to 0V and then used a leaky peak detector to average the 
amplitudes like we did in the midrange/treble, which yielded good results. 

3. Our Numitron display only counts up to 99 and then resets to zero after the “real” count 
goes past 100. We would like to implement, in code, a beats per time variable that 
average bass drops per minute to display. This would prevent the display from going 
“up” indefinitely and provide more intrigue as to how often your song has bass beats in it. 
We tried doing this, but the Numitrons couldn’t display a stable number and we didn’t 
have time to debug it, so we reverted to doing a simple counter. 

4. We would like to redo our midrange filter so it passes the correct range of frequencies. 
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5. Appendix 

I. Code for the entire program: 
 
/************************************************** 

  Program that displays level of midrange and treble levels 

  on two arrays of 8 LEDs using TLC5916 shift registers and 

  constant current drivers. 

 

  This program also uses an ISR to detect bass input 

  and to increment the value on a numitron display. The 

  program also causes haptic feedback when bass 

  is detected 

 

 

  created by Billy Koech and Bryan Hu 

  creation date: 12/3/2017 

 

  mru:12/4/2017 added midrange input 

    12/4/2017 added treble input 

    12/5/2017 added code for numitron display 

    12/6/2017 added haptic feedback 

    All changes by Billy Koech and Bryan Hu 

*******************************************/ 

 

//Declaration of pin numbers 

#define CLK_PIN 0 
#define DATA_PIN 7 
#define LATCH_PIN 2 
#define DISPLAY_SWITCH 3 
#define MIDRANGE_INPUT A5 
#define TREBLE_INPUT A4 
#define BASS_PIN 1 
#define ONES_CLK_PIN 11 
#define TENS_CLK_PIN 10 
#define NUMITRON_RESET_PIN 12 
#define MOTOR_PIN A3 
 

 

//variables 

int BeatCntr; //variable to hold number of counts 
volatile boolean BeatDetected; //ISR flag 
unsigned long LatchStart; //variable to keep time when latch is 
initiatated 

const int LEDDisplayTime = 50; //variable to delay midrange and treble 
to prevent flickering 

44 



const bool debugMode = false; 
unsigned long StartHapticFeedback; 
const unsigned long HapticFeedbackTime = 200; //length of haptic 
feedback 

 

 

//Rising edge for any clock pin 

void risingEdge(int clockPin) { 
  digitalWrite(clockPin, LOW);     // falling edge 
  digitalWrite(clockPin, HIGH);    // rising edge 
} 

 

//function that causes multiple clocks cycles to display a number on the 

numitron display 

void displayDigit(int onesDigit, int tensDigit) { 
  //clear display 

  resetNumitronDisplay(); 

 

  //display ones digit 

  for (int i = 0; i < onesDigit; i++) { 
    risingEdge(ONES_CLK_PIN); 

  } 

  //display tens digit 

  for (int i = 0; i < tensDigit; i++) { 
    risingEdge(TENS_CLK_PIN); 

  } 

 

} 

 

//function to reset the numitron displays 

void resetNumitronDisplay(void) { 
  risingEdge(NUMITRON_RESET_PIN); 

} 

 

//function that returns the the ones digits of a number 

int onesDigitFunc(int x) { 
  return (x % 10); 
} 

 

//function that returns the tens digit of a number 

int tensDigitFunc(int y) { 
  int subtractOnesValue = (y - onesDigitFunc(y)); 
  int truncated = (subtractOnesValue) / 10; 
  return onesDigitFunc(truncated); 
} 

 

 

//function that lights up 8 midrange LEDs and 8 treble LEDs 

void turnLEDOn(int LEDNumMidrange, int LEDNumTreble) { 
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  //shift in value of midrange 

  digitalWrite(DATA_PIN, HIGH);    //data high 
  for (int i = 0; i < LEDNumMidrange; i++) { 
    risingEdge(CLK_PIN); 

  } 

 

  //shift in zeros for unreached level of midrange 

  digitalWrite(DATA_PIN, LOW);    //data low 
  for (int i = 0; i < (8 - LEDNumMidrange); i++) { 
    risingEdge(CLK_PIN); 

  } 

 

  //shift in value of treble 

  digitalWrite(DATA_PIN, HIGH);     //data high 
  for (int i = 0; i < LEDNumTreble; i++) { 
    risingEdge(CLK_PIN); 

  } 

 

  //shift in zeros for unreached level of treble 

  digitalWrite(DATA_PIN, LOW);    //data low 
  for (int i = 0; i < (8 - LEDNumTreble); i++) { 
    risingEdge(CLK_PIN); 

  } 

} 

 

 

void turnAllLEDOff() { 
  //turn everything else off 

  digitalWrite(DATA_PIN, LOW);    //data high 
  for (int i = 0; i < 16; i++) { 
    risingEdge(CLK_PIN); 

  } 

} 

//function that maps midrange input 

int midrangeLevel() { 
  int amplitude = analogRead(MIDRANGE_INPUT); 
  amplitude = map(amplitude, 0, 920, 1, 8); 
  return amplitude; 
} 

 

//function that maps treble input 

int trebleLevel() { 
  int amplitude = analogRead(TREBLE_INPUT); 
  amplitude = map(amplitude, 0, 920, 1, 8); 
  return amplitude; 
} 
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void setup() { 
 

  //Declare pin modes 

  pinMode(CLK_PIN, OUTPUT); //TLC5916 Clock pin 
  pinMode(DATA_PIN, OUTPUT); //TLC5916 SDI 
  pinMode(LATCH_PIN, OUTPUT); //TLC5916 LATCH PIN 
  pinMode(DISPLAY_SWITCH, OUTPUT); //MOSEFET connected TLC5916 Vdd pin 
  pinMode(MIDRANGE_INPUT, INPUT); //input pin from midrange 
  pinMode(TREBLE_INPUT, INPUT); // input pin from treble 
  pinMode(BASS_PIN, INPUT); //input from bass comparator 
  pinMode(ONES_CLK_PIN, OUTPUT); //clock for first digit on Numitron 
  pinMode(TENS_CLK_PIN, OUTPUT); //clock for second digit on Numitron 
  pinMode(NUMITRON_RESET_PIN, OUTPUT); //reset pin for Numitron counters 
  pinMode(MOTOR_PIN, OUTPUT); //haptic feedback pin for bangers 
 

  BeatDetected = false; //initialize ISR flag 

  attachInterrupt(digitalPinToInterrupt(BASS_PIN), setISRFlag, RISING); 
//attach interrupt to Bass input pin 

  digitalWrite(LATCH_PIN, HIGH);        //set latch to high (active low) 
  digitalWrite(DISPLAY_SWITCH, LOW);    // Turn on the display driver 
(active low) 

  turnAllLEDOff();                       // Turn off all LEDs 

  resetNumitronDisplay();               //diplay zeros on Numitron 

 

  if (debugMode) { 
    Serial.begin(9600); 
    Serial.println("Initialization complete."); 
  } 

 

  //value initialisation 

  BeatCntr = 0; //initate variable to hold number of counts 
  StartHapticFeedback = 0; //initiate variable to hold time when haptic 
feedback starts 

} 

 

void loop() { 
 

  //run when debug mode is active 

  if (debugMode) { 
    Serial.print("BeatDetected and beat counter: "); 
    Serial.print(BeatDetected); 
    Serial.print(" "); 
    Serial.println(BeatCntr); 
  } 

 

 

  //increment beat counter if beat is detected 

  if (BeatDetected) { 
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    BeatCntr = BeatCntr + 1;           //increment beat counter 
 

    //store time when haptic feedback starts 

    StartHapticFeedback = millis(); 
 

    //clear ISR flag 

    BeatDetected = false; 

  } 

 

  //keep haptic feedback active for HapticFeedbackTime 

  if (StartHapticFeedback + HapticFeedbackTime > millis()) { 
    analogWrite(MOTOR_PIN, 255); //make motor vibrate at max 
  } else { 
    analogWrite(MOTOR_PIN, 0); //turn off motor 
  } 

 

 

 

  //display beat counts on the numitron display 

  displayDigit(onesDigitFunc(BeatCntr), tensDigitFunc(BeatCntr)); 

 

 

  //display midrange and treble level on array of LEDs 

  turnLEDOn(midrangeLevel(), trebleLevel()); 

 

  //decrease amount of flickering by latching value for LEDDisplayTime 

milliseconds 

  if (digitalRead(LATCH_PIN) == HIGH) { //if not latched 
    LatchStart = millis();              //set time when latched 
  } 

 

  digitalWrite(LATCH_PIN, LOW); //activate latch(active low) 
 

 

  //only deactivate latch when LEDDisplayTime has elapsed 

  if (millis() > LatchStart + LEDDisplayTime) { 
    digitalWrite(LATCH_PIN, HIGH); //deactivate latch 
  } 

 

} 

 

//ISR function that changes BeatDetected to true when beat is detected 

void setISRFlag() { 
  BeatDetected = true; 

} 
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II. Additional Pictures 

 
Audio Input jack. 
 

 
Volume control knob. 
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Arduino µController and 3V motor. 
 

 
Three 8-LED arrays (bass, midrange, treble). 
 

 
Class B push-pull amplifier. 
 

 
Audio output jack. 

50 



 
Components of the single-slope ADC. 
 

III. Full Schematic 

51 


